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Abstract
Reactive programming is all about relegating the manage-
ment of a program’s state changes to the realm of the runtime
environment. Nevertheless, sometimes it is still necessary
to enrich a reactive program with state variables that are
explicitly updated by the programmer. In current reactive
languages this is accomplished either by polluting the react-
ive paradigm with imperative constructs or by relying on
built-in operators such as foldp.

This paper introduces trampoline variables, a new general
mechanism that allows reactive programs tomanipulate state
explicitly without resorting to imperative programming. We
show that our proposal is at least as powerful as existing
built-in reactive operators. We also analyse how reactive
programs with trampoline variables can be composed and
how they can form the basis to replace stateful constituents
of a running reactive program — a.k.a. hotswapping — in
a coherent way. The latter is an essential building block
towards live IDEs for reactive programming languages.

CCS Concepts: • Software and its engineering → Data
flow languages.

Keywords: Reactive Programming, Higher-Order Program-
ming, Stateful Computations
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1 Introduction
Reactive Programming (RP) can be considered the exact op-
posite of imperative programming. The latter embraces the
explicit management of state changes. The former hides it
as much as possible. This raises the question on how to com-
bine both paradigms, something which is typically needed
whenever RP is used in an effectful or stateful context. We
discern two problems:
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• Embedding RP code in an imperative world. This is largely
understood. It corresponds to designing a “foreign function
interface” in which the imperative program is given access
to variables from the RP program [24].

• Embedding imperative code in an RP world. This is far
less understood [17] even though the need for it is widely
documented. E.g., a reactive program that computes the
average of incoming numbers or a reactive program that
is put in a certain state depending on the order of arriving
values (i.e. a finite state automaton).

To implement a stateful computation in a reactive pro-
gram, a programmer could rely on the imperative function-
ality provided by a “host language”. E.g., in REScala [38],
a reactive program is constructed by lifting ordinary Scala
functions. By allowing said functions to perform side effects
to standard Scala variables, the reactive program can man-
age state explicitly. The REScala manual discourages doing
this, but this is not enforced by the language [1]. In [17],
we demonstrated that this leads to reactive programs with
ill-defined semantics.
Alternatively, an RP language can forbid imperative as-

signments. Instead, a language may provide a set of built-
in operators that manage hidden state. E.g., in Elm [16],
the operator foldp manages an implicit accumulation vari-
able that is automatically updated by the RP runtime every
time an input signal produces a new value. Even though
the foundations of higher-order operators such as fold are
well-understood in functional programming (see e.g.. [23]),
the implementation of foldp is hardwired into the RP lan-
guage and there exists no general mechanism that allows
a programmer to build their own reusable stateful reactive
operators. Furthermore, these operators completely hide the
stateful variables in their implementation, which, especially
in the presence of hot-code reloading, makes it difficult to
migrate state between different code versions.
In this paper, we present trampoline variables: a general

mechanism, for maintaining state in RP programs that does
not confront programmers with the problems resulting from
unrestricted assignment statements in their reactive code,
while avoiding a built-in set of stateful operators (like foldp).
We present our ideas in an RP language called Haai (pro-
nounced “high”). In Haai [33], a reactive program corres-
ponds to a so-called reactor. A reactor can be seen as small
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Listing 1.One source, one sink and one trampoline variable.

(piece of a) reactive program that is represented by a DAG:
it has input nodes, internal nodes and output nodes. React-
ors can be composed within one another and deployed (i.e.
instantiated) on time-varying signals. Trampoline variables
will become “implicit” input variables of a reactor. Inside the
reactor, they can be used like any other variable. However,
at the very end of the reactor code (together with the output
nodes of the reactor) additional expressions specify how the
trampoline variables must be updated. The next time the
reactor needs to react, its trampoline variables will be bound
to the updated values. Listing 1 gives a sneak preview of
the mechanism. The reactor total will react to some input
signal a. It defines one trampoline variable acc (short for
accumulator) that is initialised to 0. Whenever a produces a
new value, the signal o is updated (by performing the addi-
tion of a and acc) and its value will be the output produced
by the total reactor. Hence the reactor has one input node
and one output node. However, after the | symbol, the ex-
pression o is used to specify the value of acc to be used in
the next turn when a produces a value. With this behaviour,
the total reactor reactively computes a running total of a
given input signal.

In this paper, we show that:

• Trampoline variables are a general mechanism that can
be used to implement the stateful operators that exist in
several other RP languages.

• Trampoline variables allow us to compose first-class state-
ful reactors in an elegant way. Trampoline variables inter-
act with nested reactors in a clean way.

• Reactors with trampoline variables are the exact level of
granularity that is needed to replace parts of a stateful
reactor programwhile it is reacting, i.e. hot-code reloading.

The paper is structured as follows. In Section 2 we give
an overview of the stateful operators that exist in various
kinds of existing RP languages. In Section 3 we present a
brief overview of Haai’s semantics, and Section 4 presents
the extension of Haai that provides trampoline variables. We
focus on their core semantics and how they interact with
Haai’s existing semantics. In Section 5 we show that trampo-
line variables cover most existing stateful operators. Finally,
in Section 6 we show how trampoline variables form the
basis of hot-swapping stateful reactive programs in running
Haai programs, by retaining trampoline variables during a
hot-code reload. This is an essential ingredient for scalable
live programming environment for RP.

1 val numbers: Event[Double] =
2 ??? /* definition not important for the example */

3 var state: (Double , Int) = (0d, 0)

4 numbers.map(n => state = (state._1 + n, state._2 + 1))

5 val average = Signal { state._1 / state._2 }

Listing 2. Updating state does not recompute average.

2 Stateful Reactive Programming
Most formulations of RP (such as FrTime [13], Flapjax [29]
and REScala [38]) are based on function lifting. The lifted
function is typically written in the host language being ex-
tended with reactive concepts. If the host language is impure,
the lifted function can refer to and update variables that are
in its lexical scope. This model of managing state breaks
down in at least 2 ways:

• A compiler of an RP language can update the nodes of the
program as long as the update order respects the DAG’s
dependencies. Since the aforementioned lexical variables
are not a part of the DAG, this can inadvertently reorgan-
ise assignment statements leading to ill-defined update
semantics. In [17] this phenomenon was called The Re-
active Update Order Leak.

• If a variable occurs in the lexical scope of 2 lifted functions
and one of them updates the variable, this will not trigger
a reactive re-evaluation of the other one. After all, the
compiler cannot track the dependency since the body of
the lifted functions falls outside the control of the reactive
language. Listing 2 exemplifies this problem in REScala:
the variable state is updated by the signal on Line 4,
and referred to by average. Since average’s reference to
state is not a reactive dependency, it is never re-evaluated.
We call thisThe Reactive Lexical Scope Leak Problem.

A more disciplined approach consists of disallowing (or
discouraging) destructive updates to lexically scoped vari-
ables or even to disallow impure lifted functions altogether.
Languages can instead provide built-in stateful operators.
For example, in Elm [16] the higher-order operator foldp
creates a stateful reactive computation. Given a (pure) binary
operator, an initial value, and a signal, foldp returns a new
signal whose value consists of the accumulating state that is
produced by applying the binary operator to the previous
state and the value produced by the input signal, every time
the input signal changes.
Many other RP languages feature similar stateful operat-

ors. Table 1 presents an overview of the stateful operators
that we found in the literature. Note that different languages
often use different names for the same (or very similar) oper-
ators. For simplicity, we have decided to group these together
under a single name. For example, FrTime [13] does not have
an operator named foldp, but it has two other operators
(collect-b and accum-b) which perform the same kinds of
accumulation, and in REScala, foldp is simply known as
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Table 1. Overview of stateful operators found in various RP languages.

Name Description Languages
Domain Specific Stateful Operators
integral Given a signal carrying numbers, computes its Riemann integral with respect

to time. A similar domain specific stateful operator is derivative which is
found in FrTime [13].

AFRP [31], Fran [19], Frappé [15],
and FrTime [13].

First-Order Stateful Operators
pre Given a signal 𝑠0 and a initial value 𝑣 , creates a signal 𝑠 whose value is

initially equal to 𝑣 . Each time the signal 𝑠0 produces a value, the previous
value of 𝑠0 is produced on 𝑠 and the current value is stored, internally, to be
used the next time 𝑠0 produces a value.

ActiveSheets [46], Hae [50], and
RT-FRP [48].

last Similar to pre, except that no initial value needs to be passed to last. Instead,
signals (on which last is being applied to) are annotated with an initial
value in their definition, such that last can always provide an initial value.

Emfrp [40], and XFRP [41].

latch Given two signals 𝑠0 and 𝑠1, creates a signal 𝑠 whose value is updated each
time 𝑠1 produces a value, the new value of 𝑠 is equal to the value that 𝑠0 had
in the previous update of 𝑠1 (or, if undefined like in the first turn, the current
value of 𝑠1).

ActiveSheets [46]

hold In RP languages that make a distinction between continuous signals and dis-
crete event streams, hold is used to convert the latter into the former. Given
a discrete event stream 𝑠0 and an initial value 𝑣 , creates a new (continuous)
signal whose initial value is equal to 𝑣 , each time the discrete event stream
produces a new value, that value is held in the signal 𝑠 .

FrTime [13], Nettle [47],
REScala [38], and Sodium [9].

delay-
by

Given a signal 𝑠0 and a time duration 𝑡 (e.g., in milliseconds), creates a new
signal 𝑠 whose value lags behind approximately 𝑡 time units w.r.t. to 𝑠0 (with
respect to some global clock).

Flapjax [29], and FrTime [13].

Higher-Order Stateful Operators
foldp Given an update function 𝑓 , an initial value 𝑣 and a signal 𝑠0, creates a new

signal 𝑠 whose value is initially equal to 𝑣 . When signal 𝑠0 produces a value
𝑒 , 𝑠’s new value is computed by applying 𝑓 on 𝑠’s current value and 𝑒 .

CFRP [43], Elm [16], Frenetic [20],
Flask [28], FRPNow [45],
FrTime [13], Gavial [37], Hae [50],
Hokko [36], Midair [30],
ReactiFi [42], REScala [38], and
SFRP [10].

feedback Given a signal function (i.e., a reactive program) of type SF (𝑎, 𝑐) (𝑏, 𝑐)
(where (𝑎, 𝑐) is the input type and (𝑏, 𝑐) the output type) and an initial value
𝑣 , creates a new signal function of type SF 𝑎 𝑏 which contains the original
signal function, connecting the output of type 𝑐 to the input of type 𝑐 with
an implicit one-turn delay (i.e. like pre) in-between, initialised with 𝑣 .

Dunai [35], Hailstorm [39],
Rhine [7], and Yampa [22].

fold. We have placed the operators into three disjoint cat-
egories. Domain-specific operators offer a specific function-
ality such as calculating the Riemann integral of a signal’s
values. The other operators are generic operators. First-order
operators are deployed on a signal and always perform the
same functionality. Higher-order operators make use of an
additional function such as foldp’s binary operator.
While Table 1 features quite an extensive list of operat-

ors, an RP language often does not need to provide every
operator as a primitive. For example, an RP language can
choose to only provide foldp as a built-in primitive. Other
stateful operators (e.g., like pre and feedback) can then be

implemented using foldp and vice-versa (assuming that the
base language is expressive enough).
Stateful operators are also present in various languages

and libraries related to RP. We list a few examples below:

• Synchronous Programming Languages Scade 6 [12]
has an operator named pre. Lucid Synchrone [11] has an
operator named fby (“followed by”) which is similar to
the definition of pre in Table 1.
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1 (defr (average-and-distance x y)

2 (def avg (/ (+ x y) 2))

3 (def dis (sqrt (+ (expt x 2) (expt y 2))))

4 (out avg dis))

Listing 3. Reactor with two inputs and two outputs.

• Streaming Frameworks and Libraries Akka has an op-
erator named statefulMapConcat [3] (which actually re-
quires a programmer to make use of imperative assign-
ments). RxJS [2] has operators like count and withLatest-
Fromwhich internally keep track of a counter or remember
a past value of an observable.
A characteristic common to all these operators is that they

are built into the RP (or streaming) language (or library)
at hand. Unlike functional programming which is capable
of explaining its built-in (higher-order) operators in terms
of general mechanisms (e.g. first-class functions, recursion,
tail-call optimisations), these stateful operators lack a gen-
eral underpinning. Furthermore, these operators make it
impossible to directly access state (as, by hiding the state in
the implementation of the operator, it is impossible to name
these stateful variables), which is necessary to retain state
when hot-swapping reactive programs.

As a possible solution to these problems, we present “tram-
poline variables” which represent state that is directly en-
coded in a reactive program’s dependency graph. We will
describe their general usage and semantics in Section 4 and
the advantages they have over ad-hoc operators (in the pres-
ence of hot-swapping) in Section 6. We first give a brief
introduction to Haai, the experimental RP language that is
used as our research vehicle.

3 Reactive Programming in Haai
We briefly describe Haai’s syntax and core concepts to keep
the paper self-contained. For a more detailed explanation on
Haai, we refer to [32, 33].

3.1 Reactors, Signals and Deployments
Reactive programs inHaai are represented as reactorswhich
are, in essence, directed acyclic dependency graphs with
explicit source and sink nodes. The code in Listing 3 shows a
reactor that, given two inputs x and y, produces their average
as well as the distance to the origin (seen as two-dimensional
coordinates).

3.1.1 Deploying a Reactor. Reactors themselves are
static: they do not compute anything by themselves nor
will they react to anything. In order for a reactor to come
alive, it first needs to be “instantiated” (which we call deploy-
ing a reactor) by connecting its inputs to the right number
of signals whose value (i.e. numbers, booleans1, strings. . . )
can change over time. The instances of reactors are called
1Written as #t (true) and #f (false) like in Scheme [4].

deployments. Each time when a reactor is deployed, new
signals are created of which some will be used as output
of the deployment (i.e. its sink signals). By default, the last
expression is the reactor’s only sink node. This behaviour
is overriden when there is an out form present, as then the
operands of the out form denote which the sink signals of
the reactor are (as shown in Listing 3).
To bootstrap a Haai program, the Haai interpreter fea-

tures a number of built-in signals such as time2 as well as a
number of built-in reactors (such as +, /, sqrt and expt). An
important distinction w.r.t. many other RP languages is that
Haai is a pure RP language that lacks functions. Reactors
are the only building blocks to make programs, and even
simple expressions like (+ x y) should therefore be thought
of as the deployment of reactor + to signals x and y (and not
of applying some built-in function to the values x and y).
The deployment expression (+ x y) creates a new signal
that depends on x and y. Each time either of those signals
changes, that signal is updated accordingly.

The same reactor can be deployed several times and each
deployment has its own set of sources, sinks and internal
signals, and is thus completely independent from any other
deployment of the same reactor. If one thinks of a reactor
as a DAG that corresponds to the dependencies specified by
the reactor, then – at least conceptually – every deployment
corresponds to a copy of that DAG in which every node
holds a current value. We therefore say that reactors are
re-entrant. average-and-distance can thus be deployed
multiple times, and changes to a signal in one deployment do
not change the signals of another deployment of average-
and-distance.

3.1.2 Reacting to Changes. Once a deployment has been
made, any changes to any of the input signal causes an auto-
matic re-computation by the RP runtime. Once a change has
been pushed to one of the reactor’s source signals, the RP
runtime updates all signals in the deployment in topologic-
ally sorted order until its output nodes are reached. We will
refer to this mechanism as a turn.
Turns occur whenever a primitive signal (like time) pro-

duces a value. Haai provides a number of built-in primitive
operations (and commands) to connect the Haai interpreter
to various external data sources, but a complete overview of
this functionally is beyond the scope of this paper.

3.2 Higher-order Reactors
Reactors in Haai are able to produce reactor values. Con-
sequently, this leads to the notion of higher-order reactors,
which are reactors that can receive reactors on their input
signals (and possibly deploy them) or produce reactor values
as output. An example of a higher-order reactor that “takes”
a reactor as input and “produces” one as output is shown
2The built-in signal time corresponds to FrTime’s seconds, except that it
starts from 0 when the program starts instead of using Unix time.
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1 (defr (add-or-mul r)

2 (if (even? (r time))

3 +

4 *))

Listing 4. Reactor producing either + or *.

in Listing 4. add-or-mul3 takes a signal of reactors r. De-
pending on whether whether the deployment of r on time
results in an even number, add-or-mul’s sink signal will pro-
duce the * or the / reactor. E.g., the deployment expression
((add-or-mull cube-or-square) a b) will produce 𝑎 +𝑏
or 𝑎 · 𝑏 depending on whether or not the values produced
by (cube-or-square time) are even or odd.
Having higher-order reactors means that deployments

can be dynamically “swapped into and out of” the reactive
program’s global DAG. Deployments of add-or-mul will
continuously swap between different DAGs every time r
produces a value. The implementation strategy to do this
efficiently is also beyond the scope of the paper.

3.3 Anonymous Reactors & Captures
Analogous to anonymous functions, Haai features anonym-
ous reactors. These are reactors that are defined in “the
middle of” another reactor’s definition. Just like anonym-
ous functions, they are denoted by a Greek letter. Instead
of lambda, like in functional programming, we denote an-
onymous reactors by the Greek letter rho (to emphasise the
creation of a reactor).

Listing 5 shows an example of a reactor which internally
contains an anonymous reactor definition. The reactor make-
adder has one source (a) and contains one output expression
which creates an anonymous reactor (which also has one
source, b). When make-adder is deployed (e.g., on mouse-x),
it produces a so-called capture which is similar to a clos-
ure in functional programming. At the interpreter level, a
capture is a pair consisting of the rho’s entire DAG and a
reference to the deployment environment, i.e. the signals
defined in its lexical environment. Hence, first-class reactors
are represented as signals of captures. Built-in reactors such
as + and * are, conceptually, captures with an empty deploy-
ment environment (i.e. they are global in the interpreter)
and their corresponding signals are, at least conceptually,
continuously producing these capture values.

When the capture from make-adder is deployed elsewhere
in the program (e.g., on some other signal, say x-offset), a
signal will be created (by the deployment of +) that depends
both on mouse-x and x-offset. As such, the signals created
by a capture deployment will not only produce a value when
3This example uses if, which creates a signal whose value is equal to
that of either the consequent signal (second operand) or alternate signal
(third operand), depending on the truth value of the condition signal (first
operand). During each turn, the deployments needed to compute the value
of the unused signal are disabled by if, thus (if #t 1 (/ time 0)) never
produces a division-by-zero error.

1 (defr (make-adder a)

2 (rho (b) (+ a b)))

Listing 5. Reactor using a lexically scoped signal.

any of their own sources (in this case x-offset) changes, but
also if one of the signals from its lexical environment, which
the capture makes use of, changes (in this case mouse-x).
Signals in deployments of captures can thus change without
any changes to their (explicit) sources. We call this scope-
driven reactivity, as deployments of a capture also react to
changes of signals in their lexical scope.

4 Trampoline Variables
Remember from Section 2 that our goal is to find a language
mechanism that is generic enough to express all possible
stateful reactive programs, without relying on a predefined
set of built-in stateful reactors and without re-introducing
imperative assignments.

4.1 Basic Idea
The main idea of the paper is to allow a reactor to declare
a number of pseudo-inputs, called trampoline variables
(trampolines for short). Trampoline variables are declared
after the normal sources of a reactor, following a vertical bar
(|). Each trampoline variable has of a name and an initial
value (which are, syntactically, surrounded between par-
enthesis). We have already shown an implementation of a
trampoline reactor (we will call reactors with a trampoline
variable “trampoline reactors”) earlier in Listing 1. We will
now describe the semantic behaviour of total’s trampo-
line variable. total has one trampoline variable named acc
whose initial value is equal to 0 (the initial value will be used
during the deployment of total to initialise the trampoline
variable). At the end of the reactor definition, the vertical bar
is used again in the out-form. The expressions that occur
here are used to determine the trampoline variables’ value
for the next turn. Hence, there must be an equal number of
expressions after the vertical bar in the out-form as there are
trampoline variables. Every time the reactor reacts to one
of its changing inputs, the trampoline variables will contain
the values of these “trampoline out” signals of the previous
turn.
The existence of trampoline variables in a reactor defini-

tion does not influence the input-arity nor the output-arity
of a reactor. Thus, the total reactor has to be deployed on
one input (source) signal and its deployment will have only
one accessible output (sink) signal.

To exemplify the inner workings of total, Table 2 shows
how each change on a signal a causes the deployment of
(total a) to be updated. Each column shows how, in each
turn 𝑡𝑖 , the values of acc and o are updated with respect
to the current value of a. A distinction is made in the table
between the current and the next of the trampoline variable
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Table 2. Evolution of the signals (and trampoline variable)
inside (total a), in function of a.

𝑡1 𝑡2 𝑡3 𝑡4 . . .
a (input) 0 2 1 6 . . .
acc⇓ 0 0 2 3 . . .
o (= a + acc⇓) 0 2 3 9 . . .
acc⇑ (= o) 0 2 3 9 . . .

acc (acc⇓ and acc⇑, respectively). A fundamental property
of trampoline variables is that they are always updated at the
end of a turn. Thus, only when a turn is finished, is a trampo-
line variable updated with the contents of the corresponding
signal defined in out part of the reactor definition. In other
words, in every turn acc⇓’s value is equal to acc⇑’s value
from the previous turn. Except in the first turn (𝑡1), when
there is no previous value of acc⇑, where acc⇓’s value’s
is set to the trampoline’s initial value, as specified in its
specification.

In summary, trampoline variables declare state at the gran-
ularity of the reactor. Only the heading of the reactor (i.e. the
declaration of the sources) and the out-part of the reactor
(i.e. the declaration of the sinks) are aware of the existence
of any trampoline variables. A reactor’s internal expressions
can pretend as if the trampoline variables are just ordinary
(input) signals. Trampoline variables make it possible to re-
member values produced in a previous turn and reactive
programs themselves do not react to changes of the trampo-
line variables, it is only when another signal in a deployment
changes, that the value of the trampoline variable is used.
As such, trampoline variables do not cause any cycles in the
dependency graph of the reactive program.

4.2 Memory Footprint of Trampoline Variables
Trampoline variables are allocated and initialised when a
reactor is deployed. Hence, every deployment of a reactor
manages its own “copy” of that reactor’s trampoline vari-
ables. The memory footprint of each reactor deployment is
constant:
• Each trampoline variable stores one single value corres-
ponding to the last value produced by a signal. At the end
of each turn, the old value of a trampoline variable is dis-
carded and replaced with the value of the signal as denoted
in the out-part of the reactor. As such, trampolines in Haai
do not cause any time-leaks [18].

• Furthermore, in the absence of data constructors (like pairs
or arrays), no unbounded data structures can be created
by trampoline variables. This ensures that Haai programs
with trampolines can be executed in constant time with
bounded memory usage, which is an important property
of many reactive programs [32, 40, 48].
The introduction of state with trampoline variables is

very similar to the introduction of state with tail-recursion

1 (defr (min-max s | (i s) (a s))

2 (def mi (min s i))

3 (def ma (max s a))

4 (out mi ma | mi ma))

Listing 6. Simultaneously calculating min and max of s.

in process-oriented actor languages [26] such as Erlang [5]
where an actor “updates” its state by calling a method in a
tail-recursive way with new values for the parameters of
that method. However, in order to avoid the thread hijacking
problem, as explained in [17], trampolines use a dedicated
syntax as opposed to giving programmers access to the full
power of recursion.

4.3 Snapshot Initialisation of Trampolines
In Listing 1, the trampoline variable is initialised by a lit-
eral expression. Every deployment of total starts counting
from 0. An alternative is to use snapshot initialisation
where the “current value” of one of the input signals is used
to initialise the trampoline variable at deployment-time. List-
ing 6 exemplifies this mechanism. In the definition of min-
max two trampoline variables i and a are declared. Each
variable remembers the smallest and largest value of the
input signal s respectively. The point of the example is that
s is used as the initialisation of trampoline variables i and a.
Every deployment of the min-max reactor will take a “snap-
shot” of the signal s’ current value in order to initialise its
trampoline variables.
Snapshot initialisation can be considered as a non-

essential feature. Indeed, reactors that require per-
deployment initialisation can be easily transpiled into a
more basic form. Haai features three-valued logic [8] which
allows the programmer to use the primitive Boolean value
#u (unknown) as a value to indicate that an actual value is
missing. This value can be used as a literal initialisation
value for trampoline variables. The reactor then needs to
check using an if-test whether the value of the trampoline
variable is equal to #u (using unknown?). For example: (if
(unknown? i) s i). Needless to say, the resulting reactor
code would be be less elegant which explains why snapshot
initialisation was conceived.

4.3.1 Example: value-now. The ability to take a snapshot
of a signal when deploying a trampoline reactor can be
used to remember this value indefinitely. In many RP lan-
guages, there exists an operator which returns a signal’s
current value without introducing a dependency (e.g. the
operator value-now in FrTime [14] and the method now in
REScala [38]). Since Haai does not feature “primitive values”
(everything is either a reactor or a signal), such an operation
is meaningless. However, it is possible to create a new (con-
stant) signal whose value is equal to the value of another
signal’s value at deployment-time. Listing 7 shows a tram-
poline reactor that creates such a signal. The signal s is only
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1 (defr (value-now s | (init s))

2 (out init | init))

Listing 7. Reactor producing the deployment-time value of
a signal ad-infinitum.

1 (defr (monitor-turns sig control | (count 0))

2 (def new-count (if control (+ count 1) 0))

3 (out sig new-count | new-count))

Listing 8. A resettable turn counter for sig.

used to initialise the trampoline variable; it does not occur
in the body of the reactor at all. As such all further values
produced by s are ignored by the trampoline variable init
which stays constant forever.

4.4 Turn Counting Semantics
Trampolines make it possible to refer to state from a pre-
vious turn. However, not every turn of a reactive program
needs to make use of a trampoline variable’s value. If none
of the inputs of a deployment change, the trampoline vari-
ables contained therein do not need to be updated (i.e., a
trampoline variable is only used by a deployment when a
change occurs). We dub this the turn counting semantics
of trampolines as only turns with changes to the inputs will
use the trampoline variable, and consequently, update its
value.

To illustrate, we implement a turn counter which tracks
how often a given input signal sig changes. Listing 8 shows
a reactor with two input variables (sig and control) and a
trampoline variable count which is initialised to 0 for every
deployment. It outputs a value based on count every time
either sig or control changes. The control signal is used
to instruct the deployment to either increment or reset count
back to zero. As long as control stays #t, every change in
sig will cause the reactor to increment and output count’s
value. Hence the reactor is able to act as a per-deployment
turn counter. As soon as control is set to #f the counter is
reset back to 0.

4.5 The Interactions of Trampoline Variables and
Higher-Order Lexically Scoped Reactors

Recall from Section 3.3 that anonymous reactors (rhos) result
in a signal that produces captures containing the rho’s DAG
and lexically scoped signals. Haai’s higher-order semantics
will be used in Section 5.3 to create reactor implementations
of foldp and feedback (from Table 1). To keep their explan-
ations short, we explain the general semantics of trampoline
variables and higher-order lexically scoped reactors here
first.

4.5.1 rhos with Trampoline Variables. Anonymous re-
actors in Haai have access to signals from their lexical en-
vironment. When an anonymous reactor has a trampoline

1 (defr (example1 foo)

2 (rho (bar | (acc 0))

3 (def o (react-to foo bar acc))

4 (out o | o)))

Listing 9. Anonymous reactor with a trampoline variable.

variable, its deployments can not only react when there’s a
change to any of the explicit sources of the anonymous re-
actor, but also if any of the captured signals from the lexical
environment change their value. Listing 9 defines a reactor,
called example1, which creates such an anonymous reactor.
When example1 is deployed (e.g, (example1 sa)), it creates
a capture containing a reference to the deployment of ex-
ample1. When that capture is then later deployed (e.g., (c
sb), assuming c is a signal that produced that capture), it
is connected to the sa signal in its lexical environment and
to the sb signal from its dynamic environment. Changes to
either sa and sb cause the deployment of c to react. Thus,
when sa produces a new value, the value of the trampoline
variable must be propagated to react-to (whose implement-
ation is, for the sake of the discussion, not important), even
when sb did not produce a value in the same turn.

In essence, lexical signals can be considered as “implicit
inputs” for capture deployments. Whenever they produce
a value, the capture deployment must produce a new value
and the trampoline variables of that capture deployment
must be consequently used and updated as before. In other
words, in the presence of higher-order lexically scoped react-
ors, our earlier definition of turn counting semantics (from
Section 4.4) is not correct. It needs to be extended to also
include the implicit inputs of any capture deployments.

4.5.2 Capturing a Trampoline Variable. Let us now
study what happens when a rho refers to a trampoline vari-
able located in its lexical scope instead of defining one in
the anonymous reactor itself. Deployments of such an (an-
onymous) reactor must always use the latest value of the
trampoline variable, even if there were no changes in the
deployment where the trampoline variable was defined. Con-
sider, for example, the implementation of example2 in List-
ing 10. When example2 is a deployed (e.g., (example2 sa))
it creates a capture (just as before). When that capture is later
deployed (e.g., (c sb), once again assuming c is a signal that
produced that capture) it will depend not only on sb, but also
on the trampoline variable acc. As acc is a trampoline vari-
able, its value is only propagated through the deployment of
the anonymous reactor if there is one input signal (including
any captured, implicit input signal) changes. Thus, it is only
when bar changes, that the value of the trampoline variable
acc is propagated to the deployment of react-to (which
for the sake of the discussion, has a different definition than
the one in Section 4.5.1).



REBLS ’21, October 18, 2021, Chicago, IL, USA Bjarno Oeyen, Sam Van den Vonder, and Wolfgang De Meuter

1 (defr (example2 foo | (acc 0))

2 (def r (rho (bar) (react-to bar acc)))

3 (def o (+ foo acc))

4 (out r | o))

Listing 10. Anonymous reactor capturing a lexical
trampoline variable.

1 (defr (example3 r | (acc 0))

2 (def o (r acc))

3 (out o | o))

Listing 11. A higher-order trampoline reactor that
can, internally, deploy a capture which can be update
independently from any of the sources of the trampoline
reactor.

4.5.3 Deploying a Capture inside a Trampoline Re-
actor. So far we have considered the two situations that
may occur when an anonymous reactor uses a trampoline
variable (either in its own environment, or from its lexical
environment). The final interaction we have to consider is
what happens when a trampoline reactor internally deploys
a capture (with implicit inputs). The internal deployment of
the capture may update, without there being any changes to
the explicit (or implicit) inputs of the trampoline reactor itself
and as such, the value of the trampoline variable must also
be correctly propagated. Consider example3 in Listing 11
which is a higher-order trampoline reactor. When example3
is deployed using a capture (e.g., (example3 (rho (in)
(+ in sa))), where for the sake of the discussion, sa is
defined elsewhere in the program and available in scope),
the example3 deployment internally deploys that capture.
As example3 passes the trampoline variable acc to the de-
ployment of that capture, acc’s value must be propagated to
this deployment even if no “inputs” of example3 (to wit, r)
produced a value.

4.5.4 Conclusion. In short, a trampoline variable is not
only used when one of the explicit inputs as present in the
parameter list (Section 4.1) produces a value, but also if an
implicit input produces a new value due to scope-driven
reactivity (Section 4.5.1), which includes the implicit inputs
(captured signals) of any capture deployments (Section 4.5.3).
There is no distinction between trampoline variables defined
in the local scope, and trampoline variables that exist in a
lexical scope (Section 4.5.2).

5 Validation
In Section 2 we have argued that the list of stateful operators
built into existing RP languages is ad-hoc and lacks a general
underpinning. This section shows that trampoline variables
can act as a general mechanism that allows us to express

1 (defr (integral x | (prev-time time)

2 (acc 0))

3 (def delta-t (- time prev-time))

4 (def result (+ acc (* x delta-t)))

5 (out result | time result))

6
7 (defr (derivative x | (prev-time time)

8 (prev-x x))

9 (def delta-t (- time prev-time))

10 (def delta-x (- x prev-x))

11 (def result (if (> delta-t 0)

12 (/ delta-x delta-t)

13 0))

14 (out result | time x))

Listing 12. Implementations of integral and derivative,
based on trampoline variables.

the inner workings of nearly every such operator. The struc-
ture of the section corresponds to the three categories of
operators discerned in Table 1.

5.1 Domain Specific Stateful Operators
We begin with the two mentioned domain specific operators
from Table 1. Their implementation is shown in Listing 12.
integral produces the Riemann integral of a signal with re-
spect to time. derivative produces a numerical derivative.

integral. integral uses two trampoline variables. acc
is initialised to 0 and is used to accumulate the value of the
integral. prev-time is snapshot initialised to the current
time. In each turn, the time elapsed since the previous turn
is computed. This is subsequently used to compute the ac-
cumulated value which corresponds to integral’s output
signal. This value and the current time are used to prepare
the trampoline variables for the next turn.

derivative. derivative is similar from a Haai se-
mantics point of view. Obviously, the mathematical formulas
are different. If delta-t is equal to zero, no time has passed
and as such no local derivative exists, in this situation the
number 0 is produced on the output signal. This edge case is
interesting: it occurs whenever the signal that corresponds
to x produces values at a faster rate than time.

These two examples show that trampolines are a very eleg-
ant and simple technique to calculate some running quantity
of a signal. Any quantity that combines the values sitting on
a signal “one by one” can be easily programmed in the same
fashion.

5.2 First-Order Stateful Operators
The implementations of the first-order stateful operators
from Table 1 can be found in Listing 13. Some operators
cannot be implemented in Haai. We have annotated them
with a †.
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1 (defr (pre s init | (acc init))

2 (out acc | s))

3
4 (defr (latch s0 s1 | (s1-old s1)

5 (acc #u)

6 (old-out #u))

7 (def tmp (if (eq? s1 s1-old) old-out acc))

8 (def o (if (unknown? tmp) s1 tmp))

9 (def new-acc (if (eq? s1 s1-old) acc s0))

10 (out o | s1 new-acc tmp))

11
12 (defr (delay-by-turns s t init)

13 (if (= t 0)

14 s

15 (pre (delay-by-turns s (- t 1) init)

16 init)))

Listing 13. Implementation of pre, latch and delay-by-
steps, based on trampoline variables.

pre. pre has one trampoline variable named acc that is
snapshot initialised with init. The first value of pre’s out-
put signal is equal to that trampoline variable. In every sub-
sequent turn induced by a new value occurring on s, the
trampoline variable is used as the reactor’s output and the
new value of s is stored in the trampoline variable for the
next turn.

last†. The exact same semantics of Emfrp’s [40] @last
operator cannot be mimicked in Haai. In Emfrp, @last can
only be used for signals whose definition is of the form node
init[⟨value⟩] ⟨name⟩ = ⟨expression⟩ to provide an initial
value in cases where it would otherwise be undefined. Notice
however that goal of Emfrp’s last is exactly the same as the
aforementioned pre (which requires the user to specify an
initial value in the deployment of pre). Hence, the inability to
implement last is not an inherent weakness of trampolines.

latch. One difficulty with expressing latch is that Haai
lacks the notion of “ticks” (cf. ActiveSheets [46]): a signal in
Haai only “ticks” if its value changes between turns (unlike
ActiveSheets where a cell, or formula, can also tick with
its old value). To replicate the notion of a tick, our imple-
mentation of latch checks whether the current value of s1
is equal to its old value (stored in the trampoline variable
s1-old). If the value is different, then it uses the old value
of s0 as stored in the trampoline variable acc to determine
its new output; otherwise, the output from a previous turn
(as stored in the old-out trampoline variable) is produced
as-is. However, if there was no prior output (e.g., during the
deployment of latch) the trampoline variable old-out is
equal to #u and in this case, the output signal of latch emits
the current value of s1. The same test to check whether or
not s1 has changed is also used to update the acc trampoline
variable such that the old value of s0 is available the next
time s1 produces a value.

hold†. Haai lacks the distinction between continuous and
discrete signals. Usually, hold is used to remember a discrete

1 (defr (foldp update init s | (acc init))

2 (def o (update s acc))

3 (out o | o))

4
5 (defr (feedback r init)

6 (rho (a | (t init))

7 (def (o1 o2) (r a t))

8 (out o1 | o2)))

Listing 14. Implementations of foldp and feedback, based
on trampoline variables.

signal’s most recent value such that it can be used in later
turns. This functionality already happens automatically for
(Haai’s) continuous signals. It is an open research question
how trampoline variables interact with discrete signals.

delay-by†. Instead of implementing delay-by exactly as
it is described in Table 1, we have implemented a variation
called delay-by-turns. We first discuss it and then explain
why it differs from delay-by in a rather fundamental way.

delay-by-turns delays a signal a number of turns. For
example, the deployment expression (delay-by-turns s
4 0) corresponds to a signal which lags 4 successive turns
behind of s (using 0 as the value produced by delay-by-
turns until s has updated 4 times). In the implementation
of delay-by-turns recursion is used to chain 4 different
deployments of pre. Therefore, delay-by-turns itself does
not use a trampoline variable but each inner deployment of
pre (in each nested deployment of delay-by-turns) does.

This solution cannot be generalised to implement delay-
by as delay-by relies on real-world time in a rather inter-
esting way. . .Haai is very restrictive w.r.t. recursion: the
implementation requires a constant number signal in any
deployment expression of a recursive reactor which needs to
decrease in value4. Any implementation of delay-by must
therefore be able to dynamically allocate memory which is
absent in Haai.

5.3 Higher-Order Stateful Operators
The implementations of the higher-order stateful operators
can be found in Listing 14.

foldp. foldp has one accumulating trampoline variable
acc which is snapshot initialised with the second input vari-
able init. The trampoline variable is used in the internal de-
ployment of the update reactor which reacts to the changes
of s and acc. Each time when s changes its value, the new
value is propagated through update together with the cur-
rent value of acc. The result is produced on its sink signal
and used as the updated accumulator.

feedback. feedback combines the expressive power of
loop (e.g., from [31, 34]) and pre. The naive approach to
first implement loop, and then combine it with our existing

4See [32] for more details on how to unwind recursion in RP programs.
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implementation of pre does not work as loop requires cyclic
reactors (which are not supported). Nonetheless, this did not
prevent a working implementation of feedback. feedback
has two parameters: r (which should be a signal producing
reactor values) and init (which should be a signal producing
the initial value). When feedback is deployed, an anonym-
ous trampoline reactor is created. When this anonymous
trampoline reactor is deployed (e.g., on a signal named sa),
its trampoline variable t gets snapshot initialised to init
(from its lexical scope) and the reactors produced by r (also
from its lexical scope) are deployed on sa and t. The first
sink signals of (r a t) is used as the anonymous reactor’s
own sink signal and the second sink signal is used to update
the trampoline variable.

feedback is an extremely powerful construct as it allows
one to express a stateful computation without using trampo-
lines, and “tighten the knot” in another part of a program.
In other words, feedback gives programmers more control
over in which deployment a trampoline variable is stored.

5.4 Conclusion
This section has shown that trampoline variables are suffi-
ciently general to serve as an underpinning for nearly all
the ad-hoc operators discussed in Table 1. Apart from last
(which is intricately intertwined with Emfrp’s technicalit-
ies) and hold (which only make sense for discrete signals),
delay-by is the only stateful operator whose semantics can-
not be expressed using trampolines. This is because the
amount of memory occupied by trampolines is constant
whereas the amount of memory required by delay-by de-
pends on the specified (real) time as well as on the pace of
the signal that is being delayed for that time.

6 Hot-Swapping with Trampolines
Haai as a language is part of a larger project. The goal is to
understand reactive systems in terms of reactions “all the
way down”. In the long run, the goal is to conceive the IDE
as a reactive system as well, similarly to how SmallTalk [21]
and Self [44] are objects “all the way down”. This means
that it will be necessary at some point to replace a part of
a running system, a feature known as hot-swapping. React-
ors form the obvious level of granularity for this. Briefly
explained, a reactor can be hot-swapped by replacing all
current deployments with a deployment of their new beha-
viour. For stateful reactors this raises the question whether
or not the state accumulated by the deployment of the old
behaviour can be handed over to the deployment of the new
behaviour. We show that the disciplined state management
syntax of trampoline reactors allows a programmer to gain
more control over this.
The main insight that shows the use of trampoline vari-

ables when hot-swapping is that every stateful computation
is required to store any stateful data in a trampoline variable:

no state is hidden by a built-in operator. We defined three
hot-swapping mechanisms (of which two are able to retain
state using trampoline variables):

1. Without State Retention When a reactor is hot-
swapped with a new behaviour, all trampoline variables
are initialised as if the deployment had just been created.
Hot-swapping without state retention is useful if the old
accumulated state is incompatible between two code ver-
sions (e.g., due to drastic changes to the internal data
representation that cannot be reconciled, or because the
trampoline variables contains incorrect values which can-
not be re-used in the new code version).

2. With By-Name State Retention The simplest mechan-
ism for state retention of trampoline reactor deployments
is to use the names of the trampoline variables to de-
termine whether or not any state can be retained. Briefly
explained: if the new version of a reactor has a trampoline
variable that has the same name as a trampoline variable
in the old version of the code, the value held by the old
trampoline variable can be used as the initial value of
the new trampoline variable (the initial value written in
the trampoline declaration is thus ignored for all exist-
ing deployments of the hot-swapped trampoline reactor).
Only trampoline variables which do not find a corres-
ponding trampoline variable in the previous deployment
are initialised using the ordinary trampoline initialisation
semantics. This state retention mechanism is, in general,
only usable if the values of the old trampoline variables
contain the same kind of information (i.e., the same type
and using the same measurement unit).

3. With an Explicit State Transformer In more complex
situations, the by-name state retention mechanism is not
powerful enough. If the new implementation of a reactor
uses a different data representation or measurement unit
(e.g., usingmilliseconds instead of seconds) for the trampo-
line variables, or has renamed them, the new deployment
may not be correctly initialised. By supplying a state trans-
former, a programmer has precise control on how the new
trampoline variables are initialised.

6.1 Hot-Swapping in Practice
An interactive session of Haai’s command-line interpreter
presenting the two state retention mechanisms is shown in
Listing 15. Black lines indicate printed output, green lines
indicate program definitions, and purple lines indicate the
usage of interpreter commands (which are explained below).

Lines 1–6 show a first implementation of average which
should compute a running average of a signal (x) over
time (t). Each time x changes, it is expected that t contains
a timestamp (e.g., expressed in seconds, such as time) that
denotes when the signal’s value has changed. It is expected
that between two temperature readings, x’s value remains
constant.
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1 (defr (average x t | (acc 0) (old-x x) (old-t t) (total-t 0))

2 (def delta-t (- t old-t))

3 (def new-acc (+ acc (* old-x delta-t)))

4 (def new-total-t (+ total-t delta-t))

5 (def avg (if (= total-t 0) 0 (/ acc total-t)))

6 (out avg | new-acc x t new-total-t))

7 :new-signal temperature 20

8 :new-signal seconds 0

9 (def avg-temperature (average temperature seconds))

10 :monitor avg-temperature

11 Value of ‘avg-temperature‘ = 0

12 :set temperature 22 seconds 1

13 :set temperature 24 seconds 2

14 Value of ‘avg-temperature‘ = 20.0

15 (defr (average x t | (acc 0) (old-x x) (old-t t) (total-t 0))

16 (def delta-t (- t old-t))

17 (def new-acc (+ acc (* old-x delta-t)))

18 (def new-total-t (+ total-t delta-t))

19 (def avg (if (= new-total-t 0) 0 (/ new-acc new-total-t)))

20 (out avg | new-acc x t new-total-t))

21 :set temperature 28 seconds 6

22 Value of ‘avg-temperature‘ = 23.0

23 :set-transformer average (rho (a b c d) (out (/ a d) b c))

24 (defr (average x t | (acc 0) (old-x x) (old-t t))

25 (def avg

26 (if (= t 0)

27 0

28 (/ (+ (* acc old-t) (* old-x (- t old-t))) t)))

29 (out avg | avg x t))

30 :set temperature 26 seconds 10

31 Value of ‘avg-temperature‘ = 25.0

Listing 15. Changing the behaviour of a reactor at-runtime
in Haai’s console-based interpreter.

To aid in our demonstration of Haai’s ability to hot-swap
reactors, we use the interpreter’s ability to create so-called
mock signals. Mock signals can be updated manually by the
programmer and allows one to interactively experiment with
a reactor’s behaviour. On Lines 7–8 we use the interpreter
command :new-signal twice to create two mock signals
named temperature and seconds which are initialised to
20 (℃) and 0 (seconds) respectively.
The average reactor is deployed on temperature

and seconds on Line 9, creating a signal named avg-
temperature. The interpreter command :monitor is used
(Line 10) to monitor which values it produces. It immedi-
ately prints avg-temperature’s latest value andwill print its
value every time when another value is produced during the
interactive session (instead of having to :print each timewe
are interested in a signal’s last value). avg-temperature’s
initial value is 0 as so far no time has passed according to
the average deployment (Line 11).

The current implementation of average contains a small
bug in which the output is not correctly computed. For
example, if one second after average has been deployed
the temperature changes to 22, we would assume that avg-
temperature would produce a 20 (as in the first second,
temperature remained a constant 20℃). However, if we
change temperature’s and seconds’s values to 22 and 1 re-
spectively5 (Line 12), nothing is printed: avg-temperature’s

5The :set command can change multiple mock signals at once by alternat-
ing the names of the mock signals with their corresponding new values.

value thus did not change. However, if we change temperat-
ure and seconds again, e.g., to respectively 24 and 2 (Line 13),
an updated value is printed (Line 14) which is the value we
expected previously. It seems that avg-temperature lags be-
hind one turn with respect to the actual changes that should
be processed.

6.1.1 Fixing average. This bug is caused by a mistake
on Line 7. Instead of using the “new” values of the trampo-
line variables total-t and acc, the old values are used to
calculate the new average. As it is not possible to use the
new values of a trampoline variable (as trampoline variables
are always updated at the end of a turn), the program must
compute the avg in terms of new-total-t and new-acc.
We apply this bug fix by changing the implementation

of average on Lines 15–20. By default, Haai will use the
by-name state retention mechanism to hot-swap a reactor in
a running program. The next time when a new temperature
reading is processed by the system, which we emulate by
changing the mock signals temperature and seconds to
28 and 6 respectively (Line 21), the new implementation of
average is used which now produces the correct output
(Line 22), to wit 20·1+22·1+24·4/6 = 23 (it was 20℃ for 1 second,
22℃ for 1 second, and 24℃ for 4 seconds, thus the average
temperature is 23℃).

6.1.2 Refactoring average. To showcase how an expli-
cit state transformer can be used, we decided to make fur-
ther changes to average. Currently, the trampoline variable
total-t is always equal to t and as such there is no need
for total-t. And, instead of storing a “weighted sum” in
acc, the average can be stored in acc instead. To compute
the next average, the old “weighted sum” can be computed
by multiplying acc (the old average) and old-t (the old
time duration). The modified implementation of average
is shown on Lines 24–29. Since the meaning of the values
stored in acc has changed, the default by-name state reten-
tion mechanism is not sufficient to correctly retain state.

An explicit state transformer can be passed using the :set-
transformer interpreter command6 (Line 23), which needs
to be set before the new reactor definition is supplied to
the interpreter. Each state transformer is only used once
(i.e. the next hot-swap of average would use the by-name
state retention mechanism again). On Line 30 we change the
values of the temperature and seconds for the last time,
and the avg-temperature signal consequently changes to
20·1+22·1+24·4+28·4/10 = 25 (Line 31), showing that the values of
the old trampoline variables were correctly used to initialise
the new deployment of average.

6As Haai lacks functions, a reactor (e.g., one implemented with rho) is used
for the state transformer. This meta reactor is only used once, for every
existing deployment, and thus behaves as if it would be a function.
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7 Discussion and Related Work
7.1 Generalising State Retention
Trampoline variables alone are not yet powerful enough to
generalise state retention. Consider, for example, the follow-
ing definition of offset which calculates the difference of a
numerical signal with respect to its initial value:
1 (defr (offset x)

2 (- x (value-now x)))

While this reactor does not define any trampoline variables,
its deployments are stateful due to the inner deployment of
value-now. When offset is modified (e.g., by refactoring
it, or by adding new functionality) all existing deployments
of offset will lose their state. When the new behaviour is
being deployed, the new deployments of value-now have
no way to restore their previous state, as in general, the
new implementation of offset may have relocated their
position in the DAG. While one could assume that, for cer-
tain code changes, that the new value-now deployment is
equivalent with respect to the old deployment, it is hard
to assume this in general. This could be solved by making
more advanced state transformers that can “traverse” the
deployment hierarchy, but we regard this approach as being
too counter-intuitive (especially considering Haai’s dynamic
deployment expressions which make it less obvious which
deployment expressions can contain state).
Other RP languages with support for hot-code reloading

also have similar issues related to state retention:
• In Midair [30], an RP language with support for hot-code
reloading built on top of Haskell, SFlows (i.e. signal func-
tions from [22]) can be replaced at-runtime by the pro-
grammer. To hot-swap a reactive program in Midair, all
existing instances of a named SFlow are replaced with a
new SFlow object that is returned by a hot-swap function.
Instead of giving this function access to any of the stateful
variables contained in an existing instance of an SFlow,
the function only gets access to the current source and
sink signal values (by supplying both as arguments to the
hot-swap function). The hot-swap function is applied to
each instantiated SFlow separately (like our state trans-
formers are for each existing deployment of the modified
reactor), and can return a different SFlow object each time
(unlike our state transformers which can only override the
initial values of the trampoline variables). This mechanism
makes it possible to initialise the inner state, as long as it
can be derived from the current input and output values
and is therefore not as powerful as trampolines.

• Instead of replacing only named components of a depend-
ency graph (like in Haai or Midair) a whole RP program
can be replaced at once. For example in essence-of-live-
coding [6], a live coding framework for Haskell on which
an RP library has been built, where the stateful informa-
tion of a (running) RP program (as a whole) closely maps
onto the structure of its dependency graph. When the

program changes, this state is automatically migrated (by
taking into account the type information of the old and
the new program, by using generics from [27]) such that
the information held in the old state, is migrated for the
new program (assuming it is compatible). While easy to
understand for basic code changes that respect the struc-
ture of the dependency graph, more complex code changes
are outright impossible as there is no way to override the
automatic state migration. Trampoline variables, on the
other hand, give direct access to the stateful values held
by the stateful reactor that is being hot-swapped.

We therefore conclude that state retention for RP lan-
guages does not have a commonly-accepted solution yet and
consider this as our future work.

7.2 Alternatives to Trampoline Variables
Besides lifting impure functions and built-in stateful oper-
ators (as explained in Section 2) there have been other ap-
proaches proposed for managing state in RP languages.

• In E-FRP [49], signals are updated by an event handler
which uses the signal’s current value (together with the
values of other signals) to determine the new value of the
signal. In this approach, every signal defined using event
handlers is essentially stateful. Unlike Haai, E-FRP has no
support for recursion nor for switching (e.g., dynamic de-
ployments or an explicit switch operator) and is therefore
much more restricted.

• Instead of storing stateful information in an operator, a
signal itself could automatically store all its past values,
This approach is used in [25], where the history of a per-
sistent signals are stored in a time-series database. There is
no need for operators like s.avg() (which computes the
average of a persistent signal s) to remember any history
(or accumulation variable) themselves if it can be derived
from the persistent signal’s stored history.

8 Conclusion
This paper presented trampoline variables, a generalised ap-
proach for stateful variables which are integrated directly in
the RP language itself. We have described their semantics
in a higher-order RP language called Haai and used them to
implement all kinds of well-known stateful operators that
can be found in other RP languages. In addition, they force
RP programmers to explicitly manage state, which makes it
possible to seamlessly handle state migrations between two
different code versions when hot-swapping.
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