
Reactive Sorting Networks

Bjarno Oeyen
bjarno.oeyen@vub.be

Vrije Universiteit Brussel
Brussels, Belgium

Sam Van den Vonder
sam.van.den.vonder@vub.be

Vrije Universiteit Brussel
Brussels, Belgium

Wolfgang De Meuter
wolfgang.de.meuter@vub.be

Vrije Universiteit Brussel
Brussels, Belgium

Abstract

Sorting is a central problem in computer science and one
of the key components of many applications. To the best of
our knowledge, no reactive programming implementation
of sorting algorithms has ever been presented.
In this paper we present reactive implementations of so-

called sorting networks. Sorting networks are networks of
comparators that are wired up in a particular order. Data
enters a sorting network along various input wires and leaves
the sorting network on the same number of output wires
that carry the data in sorted order.

This paper shows how sorting networks can be expressed
elegantly in a reactive programming language by aligning the
visual representation of a sorting network with the canonical
DAG representation of reactive programs. We use our own
experimental language called Haai to do so. With a limited
number of built-in higher-order reactive programs, we are
able to express sorting networks for bubble sort, insertion
sort, bitonic sort, pairwise sort and odd-even merge sort.

CCS Concepts: · Software and its engineering → Data

flow languages.

Keywords: Reactive Programming, Higher-Order Program-
ming, Reactor Composition, Sorting Networks

ACM Reference Format:

Bjarno Oeyen, Sam Van den Vonder, andWolfgang De Meuter. 2020.

Reactive Sorting Networks. In Proceedings of the 7th ACM SIGPLAN

International Workshop on Reactive and Event-Based Languages and

Systems (REBLS ’20), November 16, 2020, Virtual, USA. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3427763.3428316

1 Introduction

Implementing sorting algorithms forms an essential pro-
gramming exercise in any computer science curriculum and

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

REBLS ’20, November 16, 2020, Virtual, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8188-8/20/11. . . $15.00

https://doi.org/10.1145/3427763.3428316

is a key part of many applications. Implementing the stand-
ard textbook set of sorting algorithms is also used to serve
as a litmus test to study the expressiveness of new program-
ming languages and programming paradigms. To the best of
our knowledge, this exercise is currently lacking from the
literature on reactive programming.
This paper presents an implementation of a number of

elementary sorting algorithms in an experimental reactive
programming language called Haai [22]. One of the key in-
spirations of our research is that the canonical representation
of reactive programs, using directed acyclic graphs (DAGs)
as dependency graphs, naturally maps onto the visual rep-
resentation of so-called sorting networks. Although sorting
networks are nowadays primarily used by the parallel pro-
gramming community [24, 25], we found it interesting to
look at their applications in reactive programs.
Conceptually, a sorting network is an acyclic network of

comparators that receives a fixed number of incoming values
as input and which produces a sorted permutation of these
values. The simplest approach to implement a sorting net-
work is to write a program that iterates in a particular way
over an array of values to be sorted, such that, at each com-
putational step, the values in the array represent the state
of the sorting network. We propose a different approach
to implement sorting networks. By implementing sorting
networks in a reactive programming language, the textual
representation (i.e. the implementation in code) directly cor-
responds to the visual representation (i.e. the dependency
graph) of a sorting network.

In this paper, we introduce reactive sorting networks, which
are sorting networks that sort data in a reactive manner. We
have identified several shortcomings that embedded reactive
programming languages (which are reactive programming
languages that extend a non-reactive language with reactive
functionality) have when they are being used to implement
these sorting networks. Instead of mixing two language se-
mantics to construct a sorting network, which makes the
program more difficult to reason about (among other issues),
we implement our reactive sorting networks in a purely re-
active programming language (one that is not embedded in
another programming language). In short, our approach for
implementing reactive sorting networks in this language
is to generate networks of the desired type (e.g., a bubble
sorting network) and size (i.e. the number of elements to
sort) by a reactive program itself. This is achieved by using a
set of built-in higher-order reactive operators that are used to

38

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3427763.3428316
https://doi.org/10.1145/3427763.3428316

REBLS ’20, November 16, 2020, Virtual, USA Bjarno Oeyen, Sam Van den Vonder, and Wolfgang De Meuter

combine the different subcomponents of the different types
of sorting networks. Because the understanding of these
programs relies on understanding the DAG they produce as
output, we introduce a new type of diagram, called Jacquard
Diagrams, that helps to understand how such sorting net-
works (among other types of networks) can be constructed
as a reactive program. Understanding these diagrams allows
one to visualise how the higher-order program generates the
required sorting network.

The structure of this paper is as follows. In Section 2 we in-
troduce reactive sorting networks in more detail and describe
the difficulties that we encounter when trying to generate
them in an embedded reactive programming language. Sec-
tion 3 introduces Haai, a prototypical reactive programming
language that is used in the rest of this paper. Section 4
presents the built-in higher-order operators that generate
new reactive programs out of existing ones, and their cor-
responding Jacquard Diagrams. We use these operators in
Section 5 where we describe our implementations of a num-
ber of sorting networks: bubble sorting networks, bitonic
sorting networks and pairwise sorting networks.

2 Reactive Sorting

A sorting network can be seen as an abstract device that is
built around the concept of łwiresž that carry individual val-
ues [17, Section 5.3.4]. There is only one kind of fundamental
operation, namely a łcompare-and-exchangež operation that
compares the values carried by two wires and exchanges
them if they are not in the correct order. A sorting network
is a carefully crafted linkage of compare-and-exchange oper-
ations that will ensure that the values carried by the wires
are sorted when they reach the output of the network.
Consider a reactive dashboard application that perpetu-

ally displays 6 incoming values produced by 6 temperature
sensors in sorted order. A simple way to achieve this is to
build a sorting network with 6 inputs that will incrementally
sort the input values as they arrive. There are many ways
how such a sorting network can be constructed. Some net-
works are constructed with the goal to minimise the number
of compare-and-exchange operations used [3, 8], whilst oth-
ers are constructed with the goal to implement the working
of conventional sorting algorithms such as bubble sort and
insertion sort. For this paper, we only consider the latter
approach.

A simple network (based on bubble sort [17, Section 5.3.4])
for sorting 6 incoming wires (ini) resulting in 6 outgoing
wires (outi) is depicted in Figure 1. A connection between
twowires corresponds to a compare-and-exchange operation
that compares the values on twowires, and then puts them in
the right order. The network performs a bubble sort because
the first vertical łslicež of the network consists of a series
of comparators that percolate the largest value sitting on
all wires towards the end of the network (i.e. the topmost

Bubble sorting network of size 6

Bubble sorting network of size 5

Figure 1. Bubble sorting network of size 6. Data flows left
to right and the arrows show the direction of how values are
sorted.

wire, out6). The values that remain on wires in1 to in5 are
subsequently sent through a smaller bubble sorting network,
which has exactly the same structure. In other words, an
existing bubble sorting network of size 𝑛 can be extended to
create an 𝑛+1 bubble sorting network by prefixing it with
a stack of 𝑛 comparator modules that are chained together,
such that the largest value is łbubbledž to the topmost wire,
and the other wires are then subsequently sorted by the
smaller sorting network of size 𝑛. Figure 1 indicates this
inductive structure of the bubble sorting network by means
of nested rectangles.

The introduction of this paper already mentioned the cor-
respondence between sorting networks and reactive pro-
grams: both consist of a DAG of operations that are łwired
upž and that together perform some prescribed functionality.
After the łwiring upž phase, the values start flowing through
the network. In this paper, we investigate the idea of łre-
active sorting networksž which are sorting networks that
łreactivelyž sort incoming data as it arrives in the program,
without needing to execute each compare-and-exchange op-
erator every time a single input changes. By implementing
a reactive sorting network in a reactive programming lan-
guage, we get this reactivity for free.
Listing 1 contains an implementation of a REScala [27]

program where the bubbleSN function is used to create re-
active sorting networks. This Scala function has 1 argument
in which is an array of REScala signals (i.e. łlive carriers
of dataž) that carry Int values, representing the values of
the input wires. The body of the function imperatively con-
structs a bubble sorting network such that the output signals
are stored in the same array that was given as input.

The inner loop on Line 3 of Listing 1 is responsible for gen-
erating a stack of comparator modules between a decreasing
number of wires. For example, the first stack of comparators
connects the wires in1 until in6. The next stack of compar-
ators connects the wires in1 until in5. And so on. The outer
loop on Line 2 repeats this process 𝑛−1 times (where 𝑛 is the
number of input signals) to generate the 𝑛−1 vertical stacks
of comparators that make up the network.

39

Reactive Sorting Networks REBLS ’20, November 16, 2020, Virtual, USA

1 def bubbleSN(in: Array[Signal[Int]]): Unit =

2 for (sortedLn <- in.indices.reverse.tail)

3 for (ln <- 0 until sortedLn) {

4 val a = in(ln); val b = in(ln+1)

5 in(ln) = Signal { a() min b() }

6 in(ln+1) = Signal { a() max b() }

7 }

Listing 1. Generating a bubble sorting network in REScala.

Problem Statement. Using the code in Listing 1, we have
identified two shortcomings that embedded reactive pro-
gramming languages have to implement reactive sorting
networks.

First, the programmer has to deal with two distinct lan-

guage semantics. The bubbleSN function itself is just a
regular Scala function that uses Scala loops to iteratively
construct and instantiate a sorting network. The other pro-
gramming language is the REScala language, which is the
language responsible to construct the dependency graph of
the reactive component of the program. In this program,
the applications of the łSignal {}ž constructors extend the
dependency graph during the execution of the bubbleSN

function. Remark that the code inside a łSignal {}ž con-
structor is also Scala code that expresses the behaviour of
a signal. The code inside is said to be lifted such that it is
executed each time one of the signals that it depends on
changes. The same expression inside or outside a łSignal
{}ž block has, therefore, entirely different semantics (either
the active semantics as defined by Scala, or the reactive
semantics as defined by REScala), and programmers using
REScala continuously need to switch between both types of
language semantics. In addition, inadvertently interleaving
reactive code (i.e. REScala code) with active code (i.e. Scala
code) can result in undesirable run-time behaviour [7].
Second, the code does not correspond to the descrip-

tion of the actual algorithm. Indeed, the Scala function
from Listing 1 is just a function that imperatively constructs
the dependency graph. The only way to reconstruct the
bubble sorting algorithm from the code is to visualise the
dependency graph that is being constructed during the exe-
cution of the bubbleSN function, and then try to recognise
the bubble sorting network from this visualisation. This issue
occurs as in REScala signal composition is the only way how
new signals can be created. Thus a dependency graph can
only be constructed from living signals: there is no built-in
abstraction that helps to reason in terms of (the parts of)
the dependency graph itself. One can argue that this is not
that big of a problem for a bubble sorting network. However,
if we take a more complicated (but more efficient) sorting
network (e.g., a bitonic sorting network), this issue becomes
more prominent. We have included an implementation of a
REscala program that constructs bitonic sorting networks in
[21, Section A] (which contains supplementary material that
belongs to this paper). We invite the reader to compare the

complexity of this implementation with our implementation
of a bitonic sorting network shown here in Listing 9. Given
some exposure to the semantics of the language used, the
structure of the code in Listing 9 directly corresponds to the
visual representation of the bitonic network (cf. Figure 4),
whereas the code in [21, Section A] does not.

In the rest of this paper we will present our solution to
these problems in a reactive programming language called
Haai. In Section 5 we present a reactive implementation of
five famous sorting networks, implemented in Haai, such
that:

• All code is expressed in the same programming lan-

guage, namely Haai. The key feature of Haai that enables
this is that reactive programs can be generated by other,
so-called higher-order, reactive programs (called reactors).
Using a set of well-defined composition operators that can
be used on these reactors, it is then possible to compose and
reuse parts of the dependency graph. In such a language
the composition of parts of the dependency graph becomes
part of the semantics of the reactive program itself.

• The structure of the Haai code directly corresponds

to the algorithm, i.e. to the visual representation of the
sorting network. This is a consequence of how we have
chosen to tackle the first problem: reactors are used as the
building blocks to create sorting networks, and reactors can
create new reactors. Thus, when the sorting network has
an inductive structure, that structure directly corresponds
to the recursive use of reactors.

We first present a brief overview of Haai.

3 Haai

Haai1 is an experimental reactive programming language
that we use to research composition techniques for reactive
programs. In this section we present a brief overview of
Haai’s syntax and semantics.

3.1 Reactors, Deployments and Signals

In Haai, the dependency graph of a reactive program is built
out of reusable components called reactors. A reactor is an
abstraction for a dependency graph that can be reused in
the definition of other reactors. A reactor consists of zero
or more source nodes, any number of internal nodes, and at
least one sink node. Listing 2 contains a definition of a reactor
that sorts the values it receives on its two source nodes. The
name of the reactor is cae (compare-and-exchange) and the
two source nodes are named a and b. The body of the reactor
defines the internal nodes of the reactor, and in Listing 2
two named signals are defined using the def syntax (which
will be explained in more detail shortly). For example, the
smallest signal is the result of deploying the min reactor on
the two source signals a and b. Finally, the out syntax is used

1A prototype implementation of Haai can be found online: https://soft.vub.

ac.be/~boeyen/haai/.

40

https://soft.vub.ac.be/~boeyen/haai/
https://soft.vub.ac.be/~boeyen/haai/

REBLS ’20, November 16, 2020, Virtual, USA Bjarno Oeyen, Sam Van den Vonder, and Wolfgang De Meuter

1 (defr (cae a b)

2 (def smallest (min a b))

3 (def largest (max a b))

4 (out smallest largest))

Listing 2. Reactor definition of a comparator reactor that
compares the values passed via its source nodes.

Figure 2. Visualisation of the cae reactor. The source nodes
are shown on the left, and the sink nodes on the right. The
connections inside the rectangle show how the internal
nodes are connected.

to denote the sink nodes of a reactor. cae has two sink nodes:
namely the smallest and largest signals. When the out
syntax is absent in a reactor’s definition, the last expression
describes the sole sink signal. A visualisation that shows the
dependency graph of cae is contained in Figure 2.
A reactor is an abstraction for a dependency graph that

describes the behaviour of (a part of) the reactive program.
On its own, a reactor does not produce any values. It needs
to be instantiated first. Every reactor can be instantiated
multiple times in the same reactive program. We will call
these instances deployments. A deployment is responsible
for storing all run-time information that is pertinent to one
specific instance of the dependency graph (such as the latest
values for each signal contained therein).

A reactor is deployed by making a copy of its dependency
graph and replacing its source nodes with value-carrying
signals. Similar to signals or behaviours in other reactive
languages [5, 10], signals make up a reactive program’s de-
pendency graph and they can carry a value that changes
over time. In code, reactors are deployed by a deployment
expression, which has the same syntax as a procedure ap-
plication in Scheme [16]. For example, the expression (min

a b) from Listing 2 deploys the min reactor on the a and b

signals. The sink node of this deployment contains a new
signal whose value is equal to the smallest value of its two
operand signals. When a reactor has more than one sink
node (like the cae reactor), the def syntax can be used to
bind all the sink signals in the deploying environment. The
cae reactor can thus be deployed as follows:

(def (low-temp high-temp)

(cae temp-a temp-b))

Similar to the define-values syntax in Racket [12, Sec-
tion 4.5.3], def is used to bindmultiple sink signals, produced
by a single reactor deployment, at once. When there is only

1 (defr (min a b)

2 (if (< a b) a b))

Listing 3. Definition of a reactor that returns the smallest
value as carried by its two source signals.

one identifier the parenthesis surrounding the identifier can
be omitted.
Haai follows the łreactors all the way downž philosophy

[22] and thus the language does not contain procedures that
can be applied. Even the expression (sqrt 4) corresponds
to a reactor deployment (namely the deployment of the sqrt
reactor on the signal carrying the number 4). Due to various
implementation-level reasons that will be discussed later,
a distinction is made between time-varying signals (which
are signals whose value changes over time, such as time),
and constant signals (whose value does not change after the
signal’s creation, such as 4). Reactors cannot create time-
varying signals ex-nihilo, since the value of a time-varying
signal is always expressed in terms of another time-varying
signal. We therefore assume that the reactive runtime con-
tains a number of primitive signals whose values changes
naturally over time (outside of the control of the reactive pro-
gram). The time signal is the only primitive signal available
to Haai programs. Other primitive signals can be defined by
the programmer, but the means to do so are not part of this
paper.

3.2 Conditional Signals

Conditional signals are signals whose value depends on
a certain run-time condition, which usually manifest them-
selves as signals created using the if syntax. Just like in
Scheme, its syntax is defined as follows: (if 〈condition〉
〈consequent〉 〈alternative〉). When an expression that con-
tains an if is deployed, a conditional signal is created whose
value is equal to the value carried by either the 〈consequent〉
or 〈alternative〉 signal, depending on the truth value carried
by the 〈condition〉 signal. For example, the definition of the
min reactor (as used by cae) is given in Listing 3. When that
reactor is deployed, its sink signal is a conditional signal that
carries the value of a if that value is smaller than the value
carried by the signal b (and vice versa).
Although the following note is not a crucial part to un-

derstand the main narrative of the paper, it is interesting
to note that the if syntactic form is not the only construct
that gives rise to the existence of conditional signals. Or-
dinary deployment expressions are also able to instantiate
conditional signals when the expression in operator position
of a deployment expression (i.e. the first sub-expression of
a deployment expression) is a time-varying signal. These
conditional signals will carry the value as carried by the sink
signals of the deployment of the reactor that is being carried
by the signal in operator position. We will call these deploy-
ment expressions dynamic deployments since the deployment

41

Reactive Sorting Networks REBLS ’20, November 16, 2020, Virtual, USA

used by these conditional signals changes dynamically at
run-time.

3.3 The Deployment Phase and Run-Time Phase

Central to the design of the language is the fact that a Haai
program is run in two separate phases. The deployment phase

is responsible for constructing the complete dependency
graph, and the propagation phase will use this dependency
graph to percolate changes of the primitive signals. Every
time a primitive signal carries a different value, a propagation
turn is executed by the reactive runtime.

Deployment Phase. A reactive program’s dependency
graph is constructed by loading all signal and reactor defini-
tions of a Haai program in the global environment. Initially,
this global environment only contains bindings for all the
built-in primitive reactors and signals.
The complete dependency graph is constructed by evalu-

ating the deployment expressions of each top-level signal
definition. This is trivial for simple deployment expressions
that only deploy a single reactor, but dynamic deployment
expressions (deployment expressions where the value in op-
erator position is a time-varying signal, see Section 3.2) are
more complex. For dynamic deployments it is, in general,
impossible to construct the complete dependency graph dur-
ing the deployment phase as each time the signal in operator
position carries a new reactor value, that reactor needs to be
deployed. However, while a complete technical overview of
our implementation of Haai is outside the scope of this paper,
it suffices to know that during the deployment phase the
program is analysed to determine the set of possible reactor
values that can be carried by a signal (which is at worst an
over-approximation). Using this analysis for all signals used
in the operator position of a deployment expression, it is
possible, in most cases, to deploy all possible reactors during
the deployment phase, such that during a propagation turn
the reactive runtime only has to toggle between these de-
ployments. Only when the deployment-time analysis cannot
determine a finite set of deployments to pre-allocate, which
occurs in complex situations using recursion (see Section 4.3),
the deployment phase fails.

Propagation Phase. The propagation phase is respons-
ible for propagating values through the reactive program’s
dependency graph. Whenever a primitive signal carries a
new value, a propagation turn is executed. Our approach to
propagate changes is inspired by FrTime’s [5] propagation
algorithm as it ensures that only the signals affected by a
change are updated, and ensures the absence of glitches.
One minor difference is that in our implementation, there is
no need to create new deployments during the propagation
phase, as the complete dependency graph is already con-
structed in the first phase. Instead, signals in the dependency
graph are disabled (and later re-enabled) when the value
they carry is not being used during a given turn.

As the deployment phase can be executed independently
from the propagation phase, the propagation algorithm can
be replaced with another, more performant, algorithm. As
sorting networks are often used on parallel processing hard-
ware [24] (or even on GPUs [26]) it can be beneficial to
replace our single-threaded propagation algorithm with a
parallel propagation algorithm. This can not only speed up
the execution time of a single propagation turn [6, 15], but
can also allow for multiple turns to be executed in paral-
lel [9, 20]. This can substantially increase the performance of
Haai programs, especially since no run-time (re)deployments
have to take place since all deployments were allocated in
the deployment phase. In addition, when all primitive op-
erations in the dependency graph have a worst-case time
complexity of O(1), then each propagation turn also has
a worst-case time complexity of O(1) (i.e., strongly react-
ive [7]) as the number of (primitive) operations is finite (as
determined during the deployment phase). In other words,
the worst-case time complexity of a single propagation turn
is always independent of the data carried by the primitive
signals.

4 Higher-Order Weaving Reactors

In the previous section we have shown how new reactors
can be defined using the defr syntactic form. However, defr
is not the only way in which reactors can be created by a
program. Reactors can also be created as a result of using a
weaving operator. A weaving operator takes as input one or
more reactors, and produces a new reactor whose depend-
ency graph is the result of combining the reactors given as
input in a particular way.
Weaving operators will be crucial to express sorting net-

works. The idea is that the canonical visual representation
of the networks (which relies on combining certain łboxes
and linesž together) will be mimicked by applying the right
weaving operators on existing reactors to form the desired
sorting network.

A complete overview of all the built-in weaving operators
present in Haai will be shown later in this section.We first ex-
emplify their usage by means of an example. Listing 4 shows
an alternative implementation of the cae reactor from List-
ing 2. In its definition, the parallel* weaving operator is
used to combine the already existing min and max reactors
similar to how they were combined earlier. In other words,
conceptually, both definitions result in the same dependency
graph being created at deployment-time. Deployments of the
reactors created by parallel* will deploy both constituent
reactors on all of the source signals of the composite reactor
deployment. The sinks of the composite reactor deployment
are the result of appending the sinks of the first constituent
deployment to the sinks of the second constituent deploy-
ment. Thus, deployments of this alternative definition of cae
are semantically equivalent to its definition in Listing 2.

42

REBLS ’20, November 16, 2020, Virtual, USA Bjarno Oeyen, Sam Van den Vonder, and Wolfgang De Meuter

(a) (ror f g) (b) (parallel f g) (c) (parallel* f g)

(d) (rewire-in r i j) (e) (rewire-out r i j) (f) (snake r)

(g) (pre-weave f g i j) (h) (post-weave f g i j)

Figure 3. Jacquard diagrams of the composition and rewiring operators.

1 (def cae

2 (parallel* min max))

Listing 4. Alternative definition of cae using the point-free
parallel* weaving operator.

4.1 Jacquard Diagrams

Haai has a total of 8 built-in weaving operators: ror,
parallel, parallel*, snake, rewire-in, rewire-out,
pre-weave and post-weave.
From our experience, understanding the semantics of

these operators just from reading a textual description alone
can be cumbersome. Something that we found invaluable
to understand the behaviour of the weaving operators is to
draw a diagram that shows how the sources and sinks of the
original reactors are rewired and connected by a weaving
operator. We call these diagrams Jacquard diagrams. They
are named after Joseph Marie Jacquard, the inventor of the
Jacquard machine. Which is a machine that uses punched
cards to control the inner workings of a loom [11]. Similar
to how punched cards described the weaving patterns pro-
duced by a loom, a Jacquard diagram describes the various
ways in which a weaving operator łweavesž the sources and
sinks of its argument reactors.
The Jacquard diagrams of all built-in weaving operators

are shown in Figure 3. The source nodes of the reactor that
is produced by a weaving operator are shown on the left,

and the right side shows its sink nodes. A box represents
the DAG of one of the argument reactors. Its source and
sink nodes are connected respectively to the left and right
side of the box. The notation 𝑟𝑖𝑛 is used to denote the total
number of source nodes (inputs) of reactor 𝑟 , and 𝑟𝑜𝑢𝑡 de-
notes the number of its sink nodes (outputs). Signal nodes
are 1-indexed. Thus the last source node of the reactor 𝑟 is
annotated as the 𝑟𝑖𝑛

th source node. A single line represents a
connection from one signal node to another. Both ends of the
line should be annotated with a single index, which denotes
which signal nodes are connected. For simplicity, no arrows
are shown on the connections as data always flows from a
value producer (sources of the composite reactor, or sinks
of a constituent reactor) to a value consumer (sources of a
constituent reactor or the sinks of the composite reactor).
A double line represents the connections between multiple
signal nodes. Both ends of the line should be annotated with
an interval of indices.
For example, Figure 3c shows the Jacquard diagram of

parallel*, a weaving operator that we used earlier in List-
ing 4. The reactor produced by parallel* takes a copy of its
two constituent reactors f and g and it connects all the source
nodes of the composite reactor to all the source nodes of each
constituent reactor. The reactor produced by parallel* has,
in total, 𝑓𝑜𝑢𝑡+𝑔𝑜𝑢𝑡 sink nodes: f’s sink nodes are connected
to the the first 𝑓𝑜𝑢𝑡 of the composite reactor, and g’s sink
nodes are connected to the last 𝑔𝑜𝑢𝑡 sink nodes.

43

Reactive Sorting Networks REBLS ’20, November 16, 2020, Virtual, USA

4.2 The Operators

We briefly explain each higher-order weaving operator.

ror. The rorweaving operator (reactor after reactor) con-
catenates two reactors f and g in sequence, such that all the
sink signals of f are connected to the sources of g (in the
same order). As a consequence, the number of source nodes
g must be equal to the number of sink nodes of f.

parallel. The parallel weaving operator places two
reactors (f and g) in parallel. The first 𝑓𝑖𝑛 source signals of
the composite reactor are connected to f, and the last 𝑔𝑖𝑛
source signals are connected to g. The first 𝑓𝑜𝑢𝑡 source signals
of the composite reactor are connected to f’s sinks, and the
last 𝑔𝑜𝑢𝑡 source signals to g’s sinks.

parallel*. Like parallel, parallel* places two react-
ors in parallel, but the sources of the composite reactor are
connected to both the sources of f and g in the same order.
The sink nodes of the composite reactor are constructed in
the same way as in parallel.

rewire-in (resp. rewire-out). This weaving operator
takes one reactor as input, and two indices (i and j). It will
produce a new reactor where the source nodes (resp. sink
nodes) on positions i and j are swapped.

snake. The snakeweaving operator takes a single reactor
as input and produces a new reactor whose first sink node
is connected to the second source node. Thus, the resulting
reactor has one source and one sink less compared to the ori-
ginal reactor. As long as the first sink node does not already
depend (either directly or indirectly) on the second source,
the resulting dependency graph will not contain a cycle.

pre-weave (resp. post-weave). This higher-order weav-
ing operator takes two reactors f and g as input, and will
produce a new reactor where the reactor g is placed before
(resp. after) the reactor f on two specific source (resp. sink)
nodes.

These higher-order weaving operators are implemented
as primitive reactors themselves. This means that, to use
them, they have to be deployed on a number of source sig-
nals. Weaving reactors are therefore able to work with time-
varying signals. For example, when ror is deployed on two
reactor signals, it produces a new composite reactor every
time one of the operand signals carries a different reactor.
In contrast to reactor signals that can be time-varying,

the indices of rewire-in, rewire-out, pre-weave and
post-weave are required to be constant in the current imple-
mentation of Haai. This is needed to simplify the deployment-
time analysis that determines which signals can carry which
reactor values at run-time (which is needed for dynamic
deployments).

1 (defr (factorial n)

2 (if (= n 0)

3 1

4 (* n (factorial (- n 1)))))

Listing 5. An implementation of a factorial reactor.

1 (defr (parallel-n r n)

2 (if (= n 1)

3 r

4 (parallel r (parallel-n r (- n 1)))))

5

6 (defr (move-in r i j)

7 (if (= i j)

8 r

9 (let

10 (def swap-idx (if (< i j) (+ i 1) (- i 1)))

11 (def moved (move-in r swap-idx j))

12 (rewire-in moved i swap-idx))))

13

14 (defr (snake-on r out-idx in-idx)

15 (snake (move-in (move-out r out-idx 1) 2 in-idx)))

Listing 6. New weaving reactors can be constructed using
the existing ones. These reactors will be used in Section 5 to
construct reactive sorting networks.

4.3 Towards Richer Weaving Technology

Sorting networks are usually defined inductively. For ex-
ample, a bubble sorting network of size 𝑛+1 can be created
by extending a bubble sorting network of size 𝑛 with an ad-
ditional stack of comparators (see Figure 1). To enable such
combinations of reactors, Haai features a restricted form of
recursion.

To explain the basic idea, let us consider the łHello,World!ž
of recursion: the factorial. Consider the definition of the
factorial reactor in Listing 5. This reactor recursively de-
ploys itself on Line 4. Deployments of the factorial reactor
can only occur when the depth of the recursion (i.e. the num-
ber of recursive deployments of factorial) is known at
deployment-time. For example, there is no problem when
the factorial reactor is deployed by the deployment expres-
sion (factorial 5). However, when the recursion depth
cannot be determined at deployment-time (e.g., in the pro-
gram (factorial time)), the deployment phase fails.

Using recursion, it is possible to construct more complex
weaving operators. For example, by combining recursive de-
ployments with parallel, a reactor called parallel-n can
be implemented. When given a reactor r, and a number n,
parallel-n constructs a new reactor where n copies of re-
actor r are placed in parallel. Its implementation is shown in
Listing 6, together with a number of weaving operators that
will be used in the implementations of the sorting networks
in Section 5. We briefly summarise the other reactors as well.
move-in (resp. move-out2) is used to move a specific source

2The implementation of move-out has been omitted from Listing 6 since it

is similar in structure to move-in.

44

REBLS ’20, November 16, 2020, Virtual, USA Bjarno Oeyen, Sam Van den Vonder, and Wolfgang De Meuter

(resp. sink) node to a new location, by recursively swapping
the source (resp. sink) node with one of its neighbours until
it has been placed on the correct location. snake-on then
uses move-in (and move-out) to connect a specific sink node
to a specific source node (given two indices) by using the
snake primitive weaving operator.

In the rest of the paper we use the current set of 8 built-in
weaving operators, together with the limited form of recur-
sion, to build sorting networks. We make no claims about
whether or not this combination of weaving operators and
limited recursion suffices to make any reactor that one can
imagine or draw. In other words, we do not answer the ques-
tion as to whether or not every kind of weaving semantics
(given the number of source and sink nodes a description of
how the signal nodes are connected) can be implemented us-
ing the current state of the language. More theoretically, the
question does give rise to the notion of reactive completeness:
whether or not any reactor can be built given a particular
set of weaving operators and a particular composition tech-
nique.

5 Reactive Sorting with Reactors

In this section we explain how reactors in Haai can gener-

ate sorting networks, which are also reactors. The sorting
networks themselves are generated by higher-order reactors
that have two source nodes: one that determines the size of
the sorting network, and another one that determines the or-
der in which data has to be sorted via a two-wire comparator
reactor (cae from Listing 2 is an example of such a reactor).

5.1 Bubble Sorting Network

Consider the code in Listing 7 that generates a bubble sorting
network as previously introduced in Section 2. It contains
two reactor definitions: bubble-one which produces a stack
of comparators such that the largest value bubbles to the
topmost wire (which corresponds to the inner loop in List-
ing 1) and bubble which uses bubble-one to generate the
complete bubble sorting network (which corresponds to the
outer loop in Listing 1).

bubble-one. The bubble-one reactor uses recursion to
construct a stack of comparators of a given size 𝑛. In other
words, its output is a new reactor with 𝑛 sources and 𝑛 sinks
where the largest value provided on the sources is łbubbledž
to the topmost sink. For the base case of the recursion, we rely
on the fact that when 𝑛=2, the sorting network is equivalent
to a single two-wire comparator (Lines 2ś3). When 𝑛>2,
the bubble-one reactor is recursively deployed on 𝑛−1 to
construct a smaller stack of comparators (which has 𝑛−1
sources and 𝑛−1 sinks). This smaller stack is then extended
with another two-wire comparator, connecting the second
sink of the comparator (carrying the largest value of the first
two inputs) to the first source of the recursively-generated
stack of comparators using snake-on from Listing 6.

1 (defr (bubble-one n cmp)

2 (if (= n 2)

3 cmp

4 (let

5 (def p (parallel cmp (bubble-one (- n 1) cmp)))

6 (snake-on p 2 3))))

7

8 (defr (bubble n cmp)

9 (def stack (bubble-one n cmp))

10 (if (= n 2)

11 stack

12 (let

13 (def small-network (bubble (- n 1) cmp))

14 (ror stack

15 (parallel small-network

16 identity)))))

Listing 7. Implementation of bubble: which generates a
bubble sorting network reactor of a given size.

Note that in the definition of bubble-one, the let syntax
is used, which is a syntactic construct used for defining
signals in a new (deployment-time) environment. Unlike the
let syntax in Scheme [16], the let syntax in Haai does not
have a list of binding expressions. The def syntax can be
used in the body of the let to define new signals as used in
the definition of bubble-one.

bubble. The bubble reactor generates the sorting net-
work of a given size 𝑛. First, a stack of comparators is con-
structed using bubble-one which bubbles the largest value
to the topmost sink (Line 9). When 𝑛=2, the desired bubble
sorting network corresponds to this stack (which contains,
as explained in the description of bubble-one, a single com-
parator). When 𝑛>2, a smaller bubble sorting network is
generated first (Line 13) using a recursive deployment of
bubble. This smaller sorting network is then combined with
the identity reactor using the parallel weaving operator
(Line 15). This adds an additional source and sink node to the
smaller sorting network as the smaller sorting network only
has 𝑛−1 source nodes and 𝑛−1 sink nodes. This combined
reactor is then combined with the stack of comparators using
the ror weaving operator (Line 14).
To use the sorting networks generated by bubble, it has

to be deployed on the correct number of source signals. The
code in Listing 8 shows how bubble from Listing 7 can
be used. On Line 1, a bubble sorting network of size 6 is
generated using the cae reactor as the two-wire comparator.
Lines 2ś3 deploy this reactor on 6 source signals (i1 to i6)
and the sink signals produced by the deployment of the
sorting network are stored in the variables o1 to o6. These
signals will carry a sorted permutation of the values carried
by the source signals.

5.2 Bitonic Sorting Network

The code in Listing 9 contains a Haai program that generates
bitonic sorting networks [1] of size 𝑛 (where 𝑛 is required to
be a power of two). The principle of divide and conquer is

45

Reactive Sorting Networks REBLS ’20, November 16, 2020, Virtual, USA

1 (def the-sorting-network (bubble 6 cae))

2 (def (o1 o2 o3 o4 o5 o6)

3 (the-sorting-network i1 i2 i3 i4 i5 i6))

Listing 8. Code example that first generates the bubble
sorting network using bubble from Listing 7, and then
deploys the network on 6 source signals.

used to construct a bitonic sorting network. The 𝑛 input sig-
nals are split in two equal halves and each half is connected
to a recursively-created sorting network. However, one half
is sorted in the reversed order. This creates, what we call, a
bitonic signal sequence: a sequence of signals which carry,
during every turn (of the reactive program), a bitonic se-
quence. Then the bitonic signal sequence itself is sorted by a
specialised network that merges one bitonic signal sequence
in two smaller bitonic signal sequences while shifting the
larger values upwards, and the smaller values downwards.
By recursively applying this operation on each bitonic signal
sequence until 𝑛=2; the complete sorting network is con-
structed.
The Haai code is best appreciated when read with the

visualisation of the sorting network in mind. A visualisation
of a bitonic sorting network of size 8 is shown in Figure 4.
Each box represents one part of the network, and the col-
ours differentiate between the different types of boxes. We
will now explain how Listing 9 implements a reactor that
generates these bitonic sorting networks for arbitrary sizes.

bitonic. The bitonic reactor generates the complete
bitonic sorting network. When 𝑛=2, the result is equal to the
two-wire comparator. When𝑛>2 the bitonic sorting network
is constructed by first constructing two recursively-defined
sorting networks (of size 𝑛/2) using bitonic to create two
sorted sequences of signals. One of these networks sorts
the wires in the opposite order (by modifying the compar-
tor reactor using flip; see below). Both recursive sorting
networks are then combined using parallel to construct a
reactor that has 𝑛 inputs and 𝑛 outputs in total. The complete
bitonic sorting network is then created by adding a merging
network (generated by merge) to this network using ror.

flip. The flip reactor swaps the two sink nodes of a
given two wire-comparator.

weave. The weave reactor constructs the red boxes of
Figure 4. Each red box of the same size has exactly the
same structure, but depending on the location in the sort-
ing network, the sinks of the two-wire comparators might
be swapped. A weave of size 𝑛 consists of 𝑛/2 comparators
which are placed on every 𝑖th and 𝑖+𝑛/2th wire for every
𝑖 ∈ [1, 𝑛/2]. This reactor is constructed using iteration. First,
an empty 𝑛-wire reactor is constructed by placing 𝑛 cop-
ies of the identity reactor in parallel. Then, using the do
syntax (which has same syntactic form as in Scheme [16]),

1 (defr (bitonic n cmp)

2 (if (= n 2)

3 cmp

4 (let

5 (def pmc (flip cmp))

6 (ror (parallel (bitonic (/ n 2) pmc)

7 (bitonic (/ n 2) cmp))

8 (merge n cmp)))))

9

10 (defr (flip cmp)

11 (rewire-out cmp 1 2))

12

13 (defr (weave n cmp)

14 (def r-init (parallel-n identity n))

15 (def k (/ n 2))

16 (do ((r r-init (post-weave r cmp i (+ i k)))

17 (i 1 (+ i 1)))

18 ((> i k) r)))

19

20 (defr (merge n cmp)

21 (def weavings (weave n cmp))

22 (if (= n 2)

23 weavings

24 (let

25 (def post-merge (merge (/ n 2) cmp))

26 (ror weavings

27 (parallel post-merge post-merge)))))

Listing 9. Implementation of bitonic: which generates a
bitonic sorting network of a given size.

Figure 4. Bitonic sorting network of size 8. Adapted
from https://commons.wikimedia.org/wiki/File:BitonicSort1.

svg (original image provided under CC0 1.0 Universal Public
Domain Dedication).

new comparators are iteratively appended to the network.
The do syntactic form is implemented as syntactic sugar for
recursion, and thus the same restrictions that apply on recur-
sion also apply on iteration (i.e. the number of iterative steps
cannot depend on a time-varying signal, see Section 4.3).

merge. The merge reactor uses weave to split an incoming
bitonic signal sequence into two bitonic signal sequences
which are then sorted using two copies of a recursively-
generated merging network of size 𝑛/2. By repeating this
until 𝑛=2, the original bitonic sequence is sorted (the reas-
oning for this is explained in [1]).

5.3 Pairwise Sorting Network

An implementation of a reactor that constructs pairwise
sorting networks [23] is shown in Listing 10. The pairwise

46

https://commons.wikimedia.org/wiki/File:BitonicSort1.svg
https://commons.wikimedia.org/wiki/File:BitonicSort1.svg

REBLS ’20, November 16, 2020, Virtual, USA Bjarno Oeyen, Sam Van den Vonder, and Wolfgang De Meuter

sorting network of size 𝑛 (just as for bitonic sorting net-
works, 𝑛 is required to be a power of two) is constructed
in three phases. First, all consecutive pairs of input wires
are internally sorted (via a network constructed by placing
𝑛/2 comparators in parallel). Then, all odd wires and even
wires are recursively sorted by a recursively-created sorting
network. This results in a sequence of sorted pairs, which is
then merged by another network of comparators. As before,
we explain each reactor in Listing 10 in more detail.

odd-even-sort. The odd-even-sort reactor constructs
a reactor where all odd wires (and all even wires) are sorted
by a recursive sorting network of size 𝑛/2. The recursive
sorting network is constructed first, and then two copies are
placed in parallel. Then, the sources and sinks of this network
are rewired such that all odd wires are connected to the
first copy, and all even wires connected to the second copy.
The sources are rewired first. The order in which loop-in

rewires the source nodes does not matter, as long as all the
odd sources are connected to one network (e.g., the bottom
network), and all the even sources are connected to the other
network. Thus, only the odd signal nodes that are connected
to the even network need to be swapped with the even nodes
that are connected to the odd network. This takes𝑛/4 steps as
half of the sources nodes are already connected to the correct
network, and each rewire-in swaps two source nodes to
their correct position.
The loop to connect the sink nodes is slightly more com-

plex, as the order in which the sink nodes are rewired does
matter for the remainder of the algorithm. The sink nodes
are rewired from left-to-right, starting by moving the first
sink node of the second network (connected to the even
source nodes) to the second position. The next step of the
iteration moves the next sink signal of the even network
to the correct position. At every step of the iteration, one
sink node of the first (i.e. odd) network is skipped, thus they
do not need to be rewired explicitly. The loop-out reactor
takes 𝑛/2 steps to execute in total.
Note the use of n in the body of loop-in and loop-out

which shows that reactors are lexicographically scoped. The
free variable n (in both move-in and move-out) has its bind-
ing location in the odd-even-sort reactor.

ssp. The ssp (łsort sorted pairsž) reactor iteratively adds
two-wire comparators to the sorting network according
to the algorithm described in [23, Section 3]. Just like
odd-even-sort, inline reactor definitions are used in the
body of ssp.

pairwise. The pairwise reactor constructs the complete
pairwise sorting network. Unless when 𝑛=2 (which is once
again equal to the two-wire comparator), 𝑛/2 copies of
the given comparator are first placed in parallel (the first
phase of the algorithm), then the even wires and the odd
wires are independently sorted by the network generated

1 (defr (odd-even-sort n cmp)

2 (defr (loop-in r i j)

3 (if (> i (/ n 2))

4 r

5 (loop-in (rewire-in r i j) (+ i 2) (+ j 2))))

6 (defr (loop-out r i j)

7 (if (> i n)

8 r

9 (loop-out (move-out r i j) (+ i 1) (+ j 2))))

10 (def half-network (pairwise (/ n 2) cmp))

11 (def r (parallel half-network half-network))

12 (loop-out (loop-in r 2 (+ (/ n 2) 1))

13 (+ (/ n 2) 1)

14 2))

15

16 (defr (ssp n cmp)

17 (def start (parallel-n identity n))

18 (def k (/ n 2))

19 (defr (outerloop r m)

20 (defr (innerloop r i)

21 (if (> i (- k (/ m 2)))

22 r

23 (innerloop

24 (post-weave r

25 cmp

26 (* i 2)

27 (- (* (+ i (/ m 2)) 2) 1))

28 (+ i 1))))

29 (if (= m 1)

30 r

31 (outerloop (innerloop r 1) (/ m 2))))

32 (outerloop start k))

33

34 (defr (pairwise n cmp)

35 (if (= n 2)

36 cmp

37 (ror (ror (parallel-n cmp (/ n 2))

38 (odd-even-sort n cmp))

39 (ssp n cmp))))

Listing 10. Implementation of pairwise: which generates
a pairwise sorting network of a given size.

by odd-even-sort (the second phase of the algorithm), and
then these sorted pairs are sorted using ssp (the third phase
of the algorithm). All three subnetworks are placed after
each other (i.e. in sequence) using ror.

5.4 Additional Sorting Networks

We have implemented two other reactive sorting networks
of the traditional canon of sorting networks. Due to space
constraints, we were not able to include their implementa-
tions in this paper. Their implementations can be found in
the supplementary material of this paper [21, Sections BśC].
We briefly summarise both networks:

Insertion sorting network. In contrast to one’s intuition,
an insertion sorting network [17, Section 5.3.4] is identical
to the bubble sorting network of the same size. Its imple-
mentation highlights some of the intricacies of the weaving
operators.

Batcher’s odd-even mergesort sorting network. This
sorting network is similar to bitonic sorting networks (in

47

Reactive Sorting Networks REBLS ’20, November 16, 2020, Virtual, USA

size and complexity) [1] but a different pattern is used to
merge two sorted subsequences. In its implementation an
alternative definition of weave (as also used in Listing 9) is
included which does not use the do syntactic form.

6 Discussion

6.1 Evaluation

In Section 2 we outlined two problems that are present in
today’s reactive programming languages to implement sort-
ing networks: (1) that programmers using a reactive pro-
gramming language often need to deal with two distinct
programming language semantics (which can lead to undesir-
able run-time behaviour), and (2) that the code of sorting
networks built in these languages does not directly corres-
pond to the description of the sorting network. We revisit
these two problems and describe how they are not present
in programs written in Haai.

1. As explained in Section 3, Haai is a manifestation of the
łreactors all the way downž philosophy. The only łunit
of codež in Haai is that of a reactor. There are no func-
tions or procedures that can be applied. Several primitive
reactors are present in the language which create new
time-varying signals out of existing ones. In essence, the
Haai programming language itself is just a wiring language
where reactors are combined to create new reactors. The
precise behaviour of a Haai program depends, mainly, on
the functionality provided by these built-in reactors. We
have shown that given a particular set of weaving oper-
ators (implemented as built-in reactors), it is possible to
construct sorting networks in Haai, without the need for
an active (sub)language.

2. In our opinion, weaving operators are an intuitive approach
to generate (reactive) sorting networks. Starting from the
Jacquard Diagrams of the weaving operators, it is straight-
forward to visualise how a reactive program can construct
a sorting network using the weaving operators. Compared
to signal composition in an embedded reactive program-
ming language, where an active programming language is
used to manipulate signals to create an ad-hoc instantiation
of a sorting network, our approach is centered on the struc-
ture of the dependency graph itself. Indeed, at no point in
the execution of Listing 1 is an actual sorting network (as
a value) constructed: it is during the execution of the func-
tion that, as a side effect of being executed, a dependency
graph is being constructed that sorts incoming data. The
reactive runtime itself is in fact oblivious to the ordering
of these signals. Exactly this information is captured by
reactors. This makes it, in our opinion, more intuitive to
reason about code written in Haai as the correspondence
between Haai and the dependency graph (and thus, the
structure of the sorting network) is more immediate.

While our solution in Haai using reactors solves both
problems from Section 2, embedded reactive programming

languages can also benefit from having the notion of a re-
actor as an abstraction for reusable (parts of the) dependency
graph(s). Though, our approach does show that, in a pure re-
active programming language like Haai, reactors themselves
are powerful enough to build sorting networks (by using the
weaving operators).

6.2 Incremental Reactive Sorting

Reactive sorting networks have one major advantage com-
pared to a traditional implementation in an active program-
ming language: incremental updates. Whenever one of the
source signals of a reactive sorting network changes, only
that single change has to be propagated through the depend-
ency graph. Comparators that are not affected by the change
do not need to be re-evaluated. The computational complex-
ity of these incremental updates depends on the structure of
the sorting network in question.
Remember from Sections 4.2 and 4.3 that weaving oper-

ators and recursive deployments cannot make use of time-
varying signals. Thus, in contrast to the fact that our sorting
networks are able to incrementally react to changes of the
source signals, they are, actually, not reactive on the number
of the signals to sort. This means that once a sorting network
has been constructed, its size cannot change at a later point
during the program’s execution. A fully reactive sorting net-
work also needs to be able to shrink and grow, depending
on the number of actual source signals to sort.

If the size of the sorting network would be able to change
at run-time, our language would be, in a way, similar to the
Rete algorithm [13], which is a pattern matching algorithm
where not only the facts (the data) can change dynamically
(i.e. incrementally), but the rules (the program) can too. One
seemingly innocent modification, which would make it pos-
sible to adjust the size of the network at propagation-time, is
to allow the depth of the recursive deployments to be unres-
tricted during the deployment phase, along with removing
the restrictions on some of our weaving operators. How-
ever, by doing so, (recursive) deployments should be allowed
during the propagation phase, which means that the depend-
ency graph can grow dynamically (i.e. while the program
is running). To accommodate this, Haai programs would no
longer be strongly reactive (as discussed in Section 3.3).

6.3 Beyond Sorting Networks

Our focus in this paper was to use reactor composition to
express the structures of sorting networks. While sorting
networks have given rise to the design of a particular set
of eight weaving operators, we are actively interested in
extending this set of weaving operators. We have identified
two types of łnetworksž, each interesting in their own way,
that can give rise to new kinds of weaving operators whose
behaviour might not yet be supported due to the current lim-
itations on recursion, or the absence of a particular weaving
operation.

48

REBLS ’20, November 16, 2020, Virtual, USA Bjarno Oeyen, Sam Van den Vonder, and Wolfgang De Meuter

Software-Defined Networking. Software-defined net-
working is a software-based approach for managing network
infrastructure. An interesting research avenue is how Haai
can be used to implement various types of network topolo-
gies, and how reactors can be used to alter the behaviour
of a network infrastructure which can have entirely differ-
ent structures compared to sorting networks. Interestingly,
reactive programming has already been used in the field of
Software Defined Networking [14, 29].

Neural Networks. Neural networks [19] are also an inter-
esting type of network that may be suitable to be expressed
as reactors. Similarly to sorting networks, a neural network
is constructed given a number of parameters that determ-
ine the structure of the neural network (e.g., the number of
hidden layers, the number of nodes per layer. . .). However,
while a sorting network can only be used to sort incoming
data, the same neural network should be able to be used
both to learn and to make predictions. Thus, an interest-
ing research avenue is to investigate how reactors can also
generate neural networks.
By analysing different kinds of networks, we aim to es-

tablish a definitive set of weaving operators that make it
possible to express more types of networks in our program-
ming language. This should aid us in our quest towards
reactive completeness.

7 Related Work

In earlier sections, we have already compared our approach
to REScala [27]. The same issues that occur in REScala, as
described in Section 2, are also present in other embedded
reactive programming languages like Frtime [5] and Elm [6].
However, other embedded programming languages offer
other alternatives to signal composition. For example, in
Yampa [15] (an FRP language embedded in Haskell), signal
functions are proposed as an alternative to signal composi-
tion3. Signal functions have similar characteristics to Haai’s
reactors, and just like in Haai, signals in Yampa are not first-
class values. However, signal functions are not as powerful
to reactors. First, signal functions are not as easy to compose
as reactors. While a number of operators exist to compose
signal functions, some of the weaving operators that we used
in our implementation of the sorting networks are, to the
best of our knowledge, not trivial to implement for signal
functions, either due to restrictions of the type system, or
due to the fact that signal functions themselves are treated
as a black box (which would disallow internal rewirings like
performed by snake). In addition, we point out that the ar-
row syntax is quite limited as it requires every intermediate
signal to be named, an issue that is not present in Haai.

In the Emfrp [28] language, reactive programs are written
as modules that are similar to reactors in Haai. However,

3The original motivation for signal functions was to use them as a means

to avoid space and time leaks [18].

unlike reactors, modules in Emfrp are not first-class and
modules cannot create new modules the same way as how
reactors can be created by a weaving operator in Haai. In
addition, Emfrp has no support for recursion, which we deem
as a crucial property for making (reactive) sorting networks.
Lava [2] is a high-level programming language used to

describe the circuits on FPGA (Field Programmable Gate
Arrays) chips. Lava is embedded in Haskell, and has also
been used to implement sorting networks [4]. Similar to
this paper, Lava has a number of built-in operators that are
used to create new circuits by composing existing circuits.
However, besides composing the behaviours of these circuits,
Lava also has to compose the circuits themselves (using a
grid system). Some of Lava’s operators are specially crafted
to optimise the placings of the on-chip circuits. As Lava
is not a reactive language, comparing its reactive features
would be unfair. However, one noteworthy difference that
we would like to point out is that our weaving operators can
also be used on time-varying reactor signals, something that
we deem as an unlikely feature in languages for FPGAs.

8 Conclusion

In this paper, we have introduced the notion of reactive
sorting networks, which are reactive programs that incre-
mentally sort data arriving from time-varying data sources.
We have implemented five reactive sorting networks in a
language called Haai. A crucial property of Haai is that Haai
programs are run in two phases: a deployment phase and
a propagation phase. The deployment phase constructs the
dependency graph of the reactive program, and the propaga-
tion phase propagates updates of primitive signals using this
dependency graph. Reactors are first-class values, a property
that we used to provide a number of primitive operators
(called weaving operators) that can create new reactors by
weaving the source and sink nodes of existing reactors in
a particular way. We used these weaving operators in our
implementations of the sorting network-generating reactors
to let reactive programs themselves generate reactive sorting
networks. To aid in understanding the behaviour of these
weaving operators, we visualised their inner workings via
Jacquard Diagrams.
In short, our approach shows that reactors are a useful

abstraction mechanism for constructing (reusable parts of)
sorting networks, or even dependency graphs in general.
And, assuming that the right set of weaving operators is
available as reactors themselves, a reactive programming
language actually has no need for an active (sub)language
to construct the dependency graphs themselves.

Acknowledgments

Bjarno Oeyen and Sam Van den Vonder are funded by the
Research Foundation - Flanders (FWO) under grant num-
bers 1S93820N1 and 1S95318N, respectively.

49

Reactive Sorting Networks REBLS ’20, November 16, 2020, Virtual, USA

References
[1] Kenneth E. Batcher. 1968. Sorting Networks and Their Applica-

tions. In American Federation of Information Processing Societies: AFIPS

Conference Proceedings: 1968 Spring Joint Computer Conference, At-

lantic City, NJ, USA, 30 April - 2 May 1968 (AFIPS Conference Proceed-

ings, Vol. 32). Thomson Book Company, Washington D.C., 307ś314.

https://doi.org/10.1145/1468075.1468121

[2] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998.

Lava: Hardware Design in Haskell. In Proceedings of the third ACM

SIGPLAN International Conference on Functional Programming (ICFP

’98), Baltimore, Maryland, USA, September 27-29, 1998, Matthias Fel-

leisen, Paul Hudak, and Christian Queinnec (Eds.). ACM, 174ś184.

https://doi.org/10.1145/289423.289440

[3] Daniel Bundala, Michael Codish, Luís Cruz-Filipe, Peter Schneider-

Kamp, and Jakub Závodný. 2017. Optimal-depth sorting networks. J.

Comput. Syst. Sci. 84 (2017), 185ś204. https://doi.org/10.1016/j.jcss.

2016.09.004

[4] Koen Claessen, Mary Sheeran, and Satnam Singh. 2003. Using Lava

to design and verify recursive and periodic sorters. International

Journal on Software Tools for Technology Transfer 4, 3 (2003), 349ś358.

https://doi.org/10.1007/s10009-002-0089-y

[5] Gregory H. Cooper and Shriram Krishnamurthi. 2006. Embedding

Dynamic Dataflow in a Call-by-Value Language. In Proceedings of the

15th European Conference on Programming Languages and Systems,

ESOP’06 (Vienna, Austria, March 27-28, 2006) (Lecture Notes in Com-

puter Science, Vol. 3924), Peter Sestoft (Ed.). Springer-Verlag, Berlin,

Heidelberg, 294ś308. https://doi.org/10.1007/11693024_20

[6] Evan Czaplicki and Stephen Chong. 2013. Asynchronous Functional

Reactive Programming for GUIs. SIGPLAN Not. 48, 6 (June 2013),

411ś422. https://doi.org/10.1145/2499370.2462161

[7] Sam Van den Vonder, Thierry Renaux, Bjarno Oeyen, Joeri De Koster,

and Wolfgang De Meuter. 2020. Tackling the Awkward Squad for Re-

active Programming: The Actor Reactor Model. In 34th European Con-

ference on Object-Oriented Programming, ECOOP 2020 (LIPIcs, Vol. 166),

Robert Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl - Leibniz-

Zentrum für Informatik. Accepted/In press.

[8] Bert Dobbelaere. 2020. Smallest and fastest sorting networks for a given

number of inputs. http://web.archive.org/web/20200715102935/http:

//users.telenet.be/bertdobbelaere/SorterHunter/sorting_networks.

html. Accessed: 2020-07-15.

[9] Joscha Drechsler, Ragnar Mogk, Guido Salvaneschi, and Mira Mezini.

2018. Thread-safe reactive programming. Proc. ACM Program. Lang. 2,

OOPSLA (2018), 107:1ś107:30. https://doi.org/10.1145/3276477

[10] Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation.

In Proceedings of the 1997 ACM SIGPLAN International Conference on

Functional Programming (ICFP ’97), Amsterdam, The Netherlands, June

9-11, 1997, Simon L. Peyton Jones, Mads Tofte, and A. Michael Berman

(Eds.). ACM, 263ś273. https://doi.org/10.1145/258948.258973

[11] James Essinger. 2004. Jacquard’s web: how a hand-loom led to the birth

of the information age. Oxford University Press.

[12] Matthew Flatt and Robert Bruce Findler. 2014. The Racket Guide.

[13] Charles Forgy. 1982. Rete: A Fast Algorithm for the Many Pat-

terns/Many Objects Match Problem. Artif. Intell. 19, 1 (1982), 17ś37.

https://doi.org/10.1016/0004-3702(82)90020-0

[14] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher

Monsanto, Jennifer Rexford, Alec Story, and David Walker. 2011.

Frenetic: a network programming language. In Proceeding of the

16th ACM SIGPLAN international conference on Functional Program-

ming, ICFP 2011, Tokyo, Japan, September 19-21, 2011, Manuel M. T.

Chakravarty, Zhenjiang Hu, and Olivier Danvy (Eds.). ACM, 279ś291.

https://doi.org/10.1145/2034773.2034812

[15] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson.

2002. Arrows, Robots, and Functional Reactive Programming. In Ad-

vanced Functional Programming, 4th International School, AFP 2002,
Oxford, UK, August 19-24, 2002, Revised Lectures (Lecture Notes in Com-

puter Science, Vol. 2638), Johan Jeuring and Simon L. Peyton Jones (Eds.).

Springer, 159ś187. https://doi.org/10.1007/978-3-540-44833-4_6

[16] Richard Kelsey, William D. Clinger, and Jonathan Rees. 1998. Revised5

Report on the Algorithmic Language Scheme. ACM SIGPLAN Notices

33, 9 (1998), 26ś76. https://doi.org/10.1145/290229.290234

[17] Donald E. Knuth. 1998. The Art of Computer Programming, Volume

III: Sorting and Searching, 2nd Edition. Addison-Wesley, Reading, MA,

USA.

[18] Hai Liu and Paul Hudak. 2007. Plugging a Space Leak with an Arrow.

Electron. Notes Theor. Comput. Sci. 193 (2007), 29ś45. https://doi.org/

10.1016/j.entcs.2007.10.006

[19] Tom M. Mitchell. 1997. Machine learning, International Edition.

McGraw-Hill. https://www.worldcat.org/oclc/61321007

[20] Florian Myter, Christophe Scholliers, and Wolfgang De Meuter. 2019.

Distributed Reactive Programming for Reactive Distributed Systems.

Art Sci. Eng. Program. 3, 3 (2019), 5. https://doi.org/10.22152/

programming-journal.org/2019/3/5

[21] Bjarno Oeyen, Sam Van den Vonder, and Wolfgang De Meuter. 2020.

Reactive Sorting Networks (Supplementary Material). https://doi.org/

10.5281/zenodo.4139829

[22] Bjarno Oeyen, Humberto Rodríguez-Avila, Sam Van den Vonder, and

Wolfgang De Meuter. 2018. Composable higher-order reactors as the

basis for a live reactive programming environment. In Proceedings of

the 5th ACM SIGPLAN International Workshop on Reactive and Event-

Based Languages and Systems, REBLS@SPLASH 2018 (Boston, MA,

USA) (REBLS@SPLASH 2018), Guido Salvaneschi, Wolfgang De Meuter,

Patrick Eugster, Lukasz Ziarek, and Francisco Sant’Anna (Eds.). ACM,

New York, NY, USA, 51ś60. https://doi.org/10.1145/3281278.3281284

[23] Ian Parberry. 1992. The Pairwise Sorting Network. Parallel Process.

Lett. 2 (1992), 205ś211. https://doi.org/10.1142/S0129626492000337

[24] Behrooz Parhami. 2002. Introduction to parallel processing : algorithms

and architectures. Kluwer Academic, New York.

[25] Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger. 2012.

A Novel Sorting Algorithm for Many-core Architectures Based on

Adaptive Bitonic Sort. In 26th IEEE International Parallel andDistributed

Processing Symposium, IPDPS 2012, Shanghai, China, May 21-25, 2012.

IEEE Computer Society, 227ś237. https://doi.org/10.1109/IPDPS.2012.

30

[26] Matt Pharr and Randima Fernando. 2005. Gpu gems 2: programming

techniques for high-performance graphics and general-purpose compu-

tation. Addison-Wesley Professional.

[27] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala:

Bridging between Object-Oriented and Functional Style in Reactive

Applications. In Proceedings of the 13th International Conference on

Modularity (Lugano, Switzerland, April 22-26) (MODULARITY ’14),

Walter Binder, Erik Ernst, Achille Peternier, and Robert Hirschfeld

(Eds.). ACM, New York, NY, USA, 25ś36. https://doi.org/10.1145/

2577080.2577083

[28] Kensuke Sawada and Takuo Watanabe. 2016. Emfrp: a functional

reactive programming language for small-scale embedded systems. In

Companion Proceedings of the 15th International Conference on Modu-

larity, Málaga, Spain, March 14 - 18, 2016, Lidia Fuentes, Don S. Batory,

and Krzysztof Czarnecki (Eds.). ACM, 36ś44. https://doi.org/10.1145/

2892664.2892670

[29] Andreas Voellmy, Ashish Agarwal, and Paul Hudak. 2010. Nettle:

Functional reactive programming for openflow networks. Technical

Report.

50

https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/289423.289440
https://doi.org/10.1016/j.jcss.2016.09.004
https://doi.org/10.1016/j.jcss.2016.09.004
https://doi.org/10.1007/s10009-002-0089-y
https://doi.org/10.1007/11693024_20
https://doi.org/10.1145/2499370.2462161
http://web.archive.org/web/20200715102935/http://users.telenet.be/bertdobbelaere/SorterHunter/sorting_networks.html
http://web.archive.org/web/20200715102935/http://users.telenet.be/bertdobbelaere/SorterHunter/sorting_networks.html
http://web.archive.org/web/20200715102935/http://users.telenet.be/bertdobbelaere/SorterHunter/sorting_networks.html
https://doi.org/10.1145/3276477
https://doi.org/10.1145/258948.258973
https://doi.org/10.1016/0004-3702(82)90020-0
https://doi.org/10.1145/2034773.2034812
https://doi.org/10.1007/978-3-540-44833-4_6
https://doi.org/10.1145/290229.290234
https://doi.org/10.1016/j.entcs.2007.10.006
https://doi.org/10.1016/j.entcs.2007.10.006
https://www.worldcat.org/oclc/61321007
https://doi.org/10.22152/programming-journal.org/2019/3/5
https://doi.org/10.22152/programming-journal.org/2019/3/5
https://doi.org/10.5281/zenodo.4139829
https://doi.org/10.5281/zenodo.4139829
https://doi.org/10.1145/3281278.3281284
https://doi.org/10.1142/S0129626492000337
https://doi.org/10.1109/IPDPS.2012.30
https://doi.org/10.1109/IPDPS.2012.30
https://doi.org/10.1145/2577080.2577083
https://doi.org/10.1145/2577080.2577083
https://doi.org/10.1145/2892664.2892670
https://doi.org/10.1145/2892664.2892670

	Abstract
	1 Introduction
	2 Reactive Sorting
	3 Haai
	3.1 Reactors, Deployments and Signals
	3.2 Conditional Signals
	3.3 The Deployment Phase and Run-Time Phase

	4 Higher-Order Weaving Reactors
	4.1 Jacquard Diagrams
	4.2 The Operators
	4.3 Towards Richer Weaving Technology

	5 Reactive Sorting with Reactors
	5.1 Bubble Sorting Network
	5.2 Bitonic Sorting Network
	5.3 Pairwise Sorting Network
	5.4 Additional Sorting Networks

	6 Discussion
	6.1 Evaluation
	6.2 Incremental Reactive Sorting
	6.3 Beyond Sorting Networks

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

