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Abstract
Distributed systems can consist of thousands of network
nodes interacting with each other. Given their size, manag-
ing these systems to perform optimally is a task that should
be automated. Multi-agent reinforcement learning (MARL)
is a suitable technique for tackling such problems. However,
the application of MARL in a distributed system is not trivial.
To bridge the gap between these two domains, we introduce
the Marlon language. It enables MARL experts to focus on
solving machine learning problems, rather than the com-
plexities of distributed computing. We evaluate Marlon by
comparing the implementation of a load balancing use case
in Marlon with an ad-hoc implementation.

CCSConcepts •Theory of computation→Multi-agent
reinforcement learning; • Software and its engineer-
ing → Distributed programming languages; Domain
specific languages;
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1 Introduction
This work targets the use of multi-agent reinforcement learn-
ing [8] (MARL) in a distributed context. That is, our primary
focus is on the use of MARL where the environment is a
distributed system, in a broad sense of the term. For instance,
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it includes applications intended for smart grids, traffic con-
trol systems, wireless sensor networks, or vehicle-to-vehicle
communication networks. It is increasingly common for such
different types of distributed systems to involve a growing
number of networked devices. Due to their scale, it is not
trivial to ensure such systems perform optimally in terms
of e.g. throughput, reliability, latency or resource usage. Ob-
serving that each node in the network is an autonomous
entity, MARL would be a natural fit for tackling this type of
optimization problems. However, the use of MARL is compli-
cated by a number of factors inherent to distributed systems:
a cluster needs to be set up; nodes may need to share infor-
mation; nodes may dynamically join/leave the network, lose
their connection or crash. While MARL (and RL in general)
is a widely applicable technique, these factors are often not
considered. Moreover, to apply MARL to a large distributed
environment, this also suggests that the learning process
itself should be distributed as well.
This paper aims to bridge the gap between distributed

systems and MARL by means of a domain-specific language
(DSL) called Marlon1. Its purpose is to enable MARL ex-
perts to focus on machine learning problems, rather than
issues related to distributed computing. Likewise, it enables
distributed systems experts to make use of MARL without
knowing the intricacies of machine learning.

Marlon is implemented on top of the Elixir language. Elixir
is purpose-built for developing scalable, fault-tolerant dis-
tributed applications. Elixir programs run on top of the Er-
lang VM, which has a proven track record for large dis-
tributed systems (used by e.g. Amazon, Facebook, Whatsapp,
Ericsson). One of the attributes that makes Elixir suitable
for distributed systems is its support for actor-based concur-
rency, which plays a key role in Marlon as well. Throughout
the paper, a running example is used: a load balancing system
that is configured using a MARL algorithm. This example
is also used in the evaluation section of the paper, in which
we compare a Marlon implementation of the example to an
equivalent implementation written directly in Elixir.

This paper contains the following contributions:
• We introduce the Marlon language, with the aim of
addressing the challenges listed in Sec. 2. Its key con-
cepts, actors and agents, are discussed in Sec. 3. We

1Marlon is available at https://gitlab.soft.vub.ac.be/smileit/marlon-dsl
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provide an overview of Marlon, a formal syntax and
an informal semantics in Sec. 5 and Sec. 6. The API to
implement MARL algorithms is provided in Sec. 7.

• To evaluatewhetherMarlon simplifies the use ofMARL
in distributed systems, we compare a Marlon imple-
mentation of the load balancing example of Sec. 4 with
an Elixir version. The evaluation is found in Sec. 8.

2 Challenges
This section enumerates the challenges involved in combin-
ing the two domains of MARL and distributed systems. We
refer back to these challenges in the remainder of the paper.

(A) Terminology - A relation should be established be-
tween the different terminology used in the domain of MARL
and that of distributed systems.

(B) Fault tolerance - A distributed system should be able
to handle faults, e.g. due to an unreliable or broken network
connection. This factor is often not considered in MARL.

(C) Dynamic environment - In many distributed sys-
tems, it is expected that network nodes can join or leave the
network at any time. Some MARL algorithms do take into
account a dynamic environment, but many do not.

(D) Distributed environment - To avoid introducing
bottlenecks in a distributed system, communication is often
done asynchronously. In reinforcement learning, the envi-
ronment (the distributed system) would be typically modeled
as a Markov Decision Process. This distinction between the
two domains should be addressed.

(E) Cost of communication - There is a certain cost as-
sociated with communicating between different nodes in
the network. As MARL agents can run on different network
nodes and may need to share information, this communica-
tion cost should be considered.

3 Actors and agents
Before presenting Marlon, we briefly introduce the actor
model of concurrency [1], and how it relates to MARL.
The actor model - When implementing a distributed sys-

tem using the actor model, it consists of a collection of actors.
Each actor runs in its own thread of execution, has its own
state and its own behaviour. The state of an actor is isolated,
meaning that an actor is only allowed to directly access
and modify its own state. This prevents race conditions, i.e.
two threads simultaneously attempting to modify the same
data. Actors communicate with each other by sending mes-
sages. These messages are typically sent asynchronously.
This avoids deadlocks, where one thread is waiting for an-
other thread indefinitely. Finally, a major advantage of using
actors: it is easy to distribute them across network nodes.
From the programmer’s perspective, there is no difference
between sending a message to a local or to a remote actor.
Relation to MARL - When using MARL, each agent typi-

cally can only observe and interact with a part of the entire
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Figure 1. MARL process in an actor-based system

environment. As our environment consists of a collection of
actors, each agent in Marlon must be attached to one actor,
as depicted in Fig. 1. Note that not all of the actors must be
associated with an agent, as these actors may not be relevant
for the MARL problem being solved. The basic reinforce-
ment learning cycle of each agent is the following. An agent
first observes the state of its actor. The agent then chooses
an action, which corresponds to sending a specific message
to that actor. The actor then executes the chosen action by
handling the message it received. Finally, the actor computes
a reward and send it to its associated agent.
We can already discuss challenge (D) of Sec. 2, in which

asynchronous communication is preferred in distributed sys-
tems. Agents are autonomous entities; they can act inde-
pendently and do not necessarily need to synchronize their
state-action-reward cycles. Marlon currently targets MARL
approaches where such synchronization is not required.

4 Load balancing example
To illustrate the different constructs of Marlon, we will use a
load balancing example as a running example. This example
is based on the use case of Verbeeck et al. [11], where it was
used to evaluate a MARL algorithm called "exploring selfish
reinforcement learning".

An overview of the system is given in Fig. 2. It consists of
a network with one master node and several worker nodes.
The master has a certain job that needs to be distributed
across these workers. Within this network, workers can join
or leave at any time. The workers also run on heterogeneous
hardware, i.e. some workers may be faster than others. The
job that is initiated by the master can be subdivided into
"chunks". As soon as a worker joins the network, it will
request a chunk of work from the master (step 1 in Fig. 2).
Next, the master will send the required data of that chunk
to the worker (step 2). It is important to note that sending
this data may take some time, and that multiple workers
may request a chunk from the master simultaneously. In our
implementation, the master handles these requests one at
a time, so some workers may have to wait longer for their
chunk. Once a worker has received its chunk, the worker
can process it (step 3). When finished, the worker sends the
results back to the master (step 4). Once this is done, the
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Figure 2. Load balancing use case overview

Figure 3. Load balancing visualization

actor ::= defactor type domember ∗ end
member ::= [property] def identifier(identifier∗) block

send ::= type.identifier(identifier∗)
block ::= do stmt∗ end

property ::= sync | async | reply
stmt ::= an Elixir statement
atype ::= a type name (in CamelCase)

identifier ::= an identifier (in snake_case)

Figure 4. defact or syntax

worker will repeat the process until the master replies that
the entire job is finished.

A snapshot of our live visualization of the system is given
in Figure 3. It depicts a timeline of the activity of the master
and all workers. The “Communicating” parts of the timeline
indicate when chunk data is being sent/received.
The goal of this example is to use MARL to select the

chunk size of each worker to approach an optimal system,
in which neither the master nor the workers are ever idle.
To achieve this, an agent is associated with each worker.

5 Distributed programming in Marlon
Having introduced our running example, we can now focus
on representing the environment in Marlon.

5.1 Actor definitions
As mentioned in Sec. 3, an environment in Marlon is com-
posed of actors. To define an actor, the defactor construct
is used. Its syntax is specified in Fig. 4 (square brackets indi-
cate an optional part; a * indicates repetition). Two concrete
examples of actor definitions are given in Figures 6 and 7,
which respectively define the behaviour of a master and a
worker node in the load balancing example. We will walk
through these examples in detail in the next section, Sec. 5.2.
This section primarily focuses on introducing the different
components of an actor definition:

init function - When spawning a new actor, its init
function is called (line 2-5 in Fig. 6; line 2-5 in Fig. 7). Similar
to a class constructor, it produces the actor’s initial state. In
case of the Master actor, its initial state is a dictionary/map
that contains: the communication time (to simulate how long
it takes to send a chunk of size 1), the number of chunks that
have not yet been processed, how many received requests
have not been processed yet, the list of workers that are
currently processing a chunk. In case of the Worker actor, its
initial state contains: a process ID of the master, its “speed
factor” (to simulate that some workers are faster than others),
how long it has to wait before the master responds to a
request, how long it takes to process a chunk of size 1.

Apart from the init function, an actor can contain three
types of message handlers: synchronous, asynchronous and
reply message handlers:

async message handlers - When a message is handled
by an async/asynchronous message handler, the actor that
sent the message does not have to wait for any return value
and can immediately continue. The first parameter of the
async message handler, this, represents the actor’s current
state. Any other parameters are message parameters pro-
vided by the sender. When the message handler successfully
returns, it returns a 2-tuple, where the first element always
is :noreply. (If an error occurs, this element will be :error)
The second element is the new state of this actor, i.e. the
actor will have this state as soon as the message is handled.

syncmessage handlers - This is a synchronous message
handler; the sender must wait until a result is returned. A
sync handler has at least has two parameters, this and from:
this is the current state of the actor. from is the process ID
of the actor that sent the message. Any other parameters
are the message parameters. A sync handler must return a
tuple , where the first element is either :reply or :noreply.
For :reply, the return tuple is a 3-tuple: the second element
is the return value; the third is the new state of this actor.
For :noreply, the return tuple is a 2-tuple, where the sec-
ond element is the new state of this actor. A :noreply is
used if the actual reply to the sender is provided later by a
reply message handler. This is useful e.g., when the actor
needs to wait before a reply can be sent, but it should still be
responsive to handle any new messages while it is waiting.

reply message handlers - This handler is used when a
reply is postponed by a sync message handler. The Elixir
function GenServer.reply can be used to send a reply to
the actor that originally sent a message to a sync handler.

5.2 Load balancing environment in Marlon
Having discussed the different types of message sends, we
can now briefly walk through the code for the load bal-
ancing example to get a better idea of Marlon’s use. The
code that initiates the load balancing system, which is exe-
cuted on the network node for the master, is given in Fig. 5.
Please note that any commented-out lines (with a # prefix)
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1 {:ok, m} = Master.start_link ([2000] ,[])

2 Master.create_job(m, 10000)

3 Enum.map(Node.list(),

4 fn(node) ->

5 {:ok, w} = Worker.start_link_remote(

6 node , [m, random_int (1,5), 5000], [])

7 # Worker.attach_agent(w, ChunkSizeGoal)

8 Worker.start(w)

9 end)

Figure 5. Initiating the load balancing system

1 defactor Master do

2 def init([ comm_time ]) do

3 {:ok, %{comm_time: comm_time , chunks_remaining: 0,

4 pending_req_size: 0, chunks_in_progress: %{}}}

5 end

6
7 sync def create_job(this , _from , job_size) do

8 {:reply , :ok, %{this | chunks_remaining: job_size}}

9 end

10
11 sync def req_work(this , from , chunk_size) do

12 new_pending = this[:pending_req_size] + chunk_size

13 Worker.notify_wait_time(elem(from ,0),

14 new_pending * this[:comm_time ])

15 Process.send_after(self(),

16 {:req_reply , chunk_size , from}, this[:comm_time ])

17 {:noreply , %{this | pending_req_size: new_pending}}

18 end

19
20 async def work_finished(this , worker) do ... end

21 async def work_cancelled(this , worker) do ... end

22 reply def req_reply(this , chunk_size , from) do ... end

23 end

Figure 6. Marlon code for the master actor

can be ignored for now; these will be discussed once the
MARL portion of Marlon is covered. Actors are spawned
using the start_link Elixir function: line 1 first spawns a
new master m. The create_job message is then sent to m
on line 2, to create a new job of size 10000. The message
handler for create_job is given in lines 7-9 of Fig. 6. Lines
3-9 of Fig. 5 iterate over every network node that this current
node is connected to, and start a worker on that node using
start_link_remote. The worker is then activated by send-
ing it a start message. The async handler for the start
message is given on lines 6-11 in Fig. 7, where the worker
sends itself a process_chunk message with chunk size 1.
In the process_chunk handler, the worker first sends a

request to themaster to obtain a new chunk of size 1. This cor-
responds to step 1 of our overview figure, Fig. 2. As an imme-
diate response, the master first tells the worker how long to
wait before it will receive its chunk (line 13-14 of Fig. 6). The
master computes this waiting time based on howmany other
workers sent a request that is not handled yet, multiplied
by how long it takes to send a chunk, this[:comm_time].
As this example does not send any actual chunk data, this

1 defactor Worker do

2 def init ([m, speed , chunk_time ]) do

3 {:ok, %{master: m, speed_factor: speed ,

4 wait_time: 0, chunk_time: chunk_time}}

5 end

6
7 async def start(this) do

8 Worker.process_chunk(self(), 1)

9 # Worker.do_action(self(), ChunkSizeGoal)

10 {:noreply , this}

11 end

12
13 async def process_chunk(this , chunk_size) do

14 result = Master.req_work(this[:master], chunk_size)

15 if result != :no_more_work do

16 Process.send_after self(), {:processed_chunk},

17 round(this[:chunk_time] *

18 chunk_size / this[:speed_factor ])

19 end

20 {:noreply , this}

21 end

22
23 reply def processed_chunk(this) do

24 Master.work_finished(this[:master], self())

25 Worker.process_chunk(self(), 1)

26 # Worker.do_action(self(), ChunkSizeGoal)

27 {:noreply , this}

28 end

29
30 async def notify_wait_time(this , wait_time) do

31 new_state = %{this | wait_time: wait_time}

32 # Worker.update_reward(self(), new_state ,

33 # ChunkSizeGoal)

34 {:noreply , new_state}

35 end

36 end

Figure 7. Marlon code for a worker actor

is simulated by letting the master wait, and only send it-
self a req_reply message after this[:comm_time]. In the
req_reply handler (not shown due to space limitations), the
master updates how much work still remains, and sends a
reply to the worker whether it can go ahead with processing
the chunk. Step 2 of Fig. 2 is now complete.
The worker can now process the chunk, i.e., step 3 of

the overview figure. Chunk processing is simulated on lines
16-18 of Fig. 7 by waiting for an amount of time, based on
the chunk size multiplied by the time it takes to process a
chunk of size 1. Once the chunk has been processed, the
worker sends itself a processed_chunk message, in which
the worker reports back to the master that it has finished.
This completes step 4 of the overviewfigure. Next, theworker
restarts the entire process by requesting a new chunk.

This concludes our overview of the entire load balancing
code. Note that, up to now, we have not introduced anything
novel, which is also intentional. The main takeaway of this
section is that distributed system developers can develop
their code without specific restrictions, i.e., without having
to design the system with machine learning in mind.
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goal ::= defgoal type do
marltype [marlparams]
actions rewardfn [abstractfn]
[shared] [deviation] end

marltype ::= type type
marlparams ::= params [keyvalue∗]

keyvalue ::= identifier: expr
actions ::= actions [msgpar∗]
msgpar ::= identifier: [parvals∗]
parvals ::= [expr∗]

rewardfn ::= reward fn(agent, state) -> stmt∗ end
abstractfn ::= abstraction fn(agent, state) ->

stmt∗ end
shared ::= shared [(:identifier)∗]

deviation ::= share_deviation [keyvalue∗]
expr ::= an Elixir expression

Figure 8. Marlon syntax for the defgoal construct

1 defgoal ChunkSizeGoal do

2 type Marlon.ESRL

3 params [explorations: 7, steps: 20]

4 actions [process_chunk: [[1 ,2 ,3]]]

5 reward fn(_agent , worker_state) ->

6 1 / worker_state[:wait_time] end

7 end

Figure 9. Goal specification to optimize the chunk size

6 MARL integration
The integration of MARL in Marlon consists of two key parts.
First, the Marlon developer should describe the problem to
be solved with a goal definition. (Sec. 6.1) Second, this speci-
fication needs to be integrated with the distributed system
for it to have an effect. (Sec. 6.2)

6.1 Goal specification
The syntax of defgoal, a goal definition, is provided in Fig. 8.
Together with Fig. 4, this forms the complete syntax defi-
nition of Marlon. A concrete example of a defgoal for our
load balancing example is given in Fig. 9. As this example
shows, the definition of a goal can be quite concise. This is
part of addressing the terminology challenge (A) of Sec. 2, in
the sense that the developer is not required to interact with
the MARL algorithm directly, and only needs to be aware
of the basic “choose an action”-“update the reward” cycle to
know about the terms action and reward. A goal definition
consists of the following components:

type and params - The type component of defgoal spec-
ifies which specific MARL algorithm to use by providing its
Elixir module name. The API to implement a MARL algo-
rithm is discussed later in Sec. 7. In our example, we are
using the exploring selfish reinforcement learning (ESRL)
algorithm [11]. It is possible to configure the algorithm’s
parameters, using the params component. These parameters
can be different depending on which algorithm is chosen. If
a parameter value is not provided, a default value is used.

actions - The action space in Marlon is specified in terms
of which messages an agent is allowed to send, together with
the possible parameter values of that message. If the action
space is [a: [[1,2]], b: [["foo", "bar"], [3,4]] ,
there are 6 possible actions. The agent can either send the
message a(1) , a(2), b("foo",3), b("bar", 3), b("foo",
3) or b("foo", 4). When exactly the agent must choose
an action is discussed in the next section. In our example of
Fig. 9 (line 10), the agent can only send the process_chunk
message, but it can choose between a chunk size of 1, 2 or 3
as the parameter of that message.

rewardfn - When an agent is asked to compute a reward
based on the current state of its associated actor, this function
is called. The reward function of our load balancing example
is given on line 5-6 of Fig. 9.

abstractfn - An abstraction function receives the state
of the associated actor as input, and returns an abstracted
version of that state. Using an "abstraction function" is rec-
ommended for MARL algorithms that aim to learn the best
action to take for each possible state of the associated actor.
Because an actor can be in many different possible states
(often an infinite number), the abstraction function is used to
abstract away information from the current state to obtain
a significantly smaller (and finite) state space. For instance,
in our load balancing example, the only relevant field of a
worker is the amount of time it should wait for a request. A
suitable abstraction function would take a worker’s state as
input, and produce e.g. either "long", "medium", "short"
or "none" to represent the waiting time. This reduces the
number of possible states of a worker from infinity to 4.

shared and share_deviation - When MARL algorithms
require that information is shared among all agents, the
shared component can be used to list what information
exactly is automatically shared among agents. If the list in-
cludes the :action keyword, the last action chosen by each
agent is shared. If it includes :reward, the last reward value
is shared. Any other keyword is interpreted as a field of the
actor that an agent is associated with, which is then shared.
For instance, shared [:wait_time] shares the waiting time
of a worker. Whenever any shared information changes in
one of the agents, the change is communicated to the other
agents. Any information that is shared will then be available
in the agent’s reward computation function. We should note
this currently is the only mechanism for agents to communi-
cate with each other. MARL algorithms where agents need
to negotiate with each other (in a synchronized manner), e.g.
to agree on a joint action, are not supported yet.

Finally, there is the share_deviation component. To re-
duce the amount of communication among actors (chal-
lenge (E) of Sec. 2), an agent will only contact the other
agents when the information of interest changes. If an agent
is not contacted, it assumes the other agents’ information
has remained unchanged. To further reduce communication,
share_deviation can also be used to specify how much the
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value of an integer/float field is allowed to deviate before an
agent will communicate the new value to other agents. For
instance, share_deviation [wait_time: 0.5] will only
share a changed waiting time if it changed more than 0.5.

6.2 Attaching agents to a distributed system
To make use of a goal definition, we should still attach agents
to the distributed systems, and indicate when an agent must
choose an action, and when it can compute its reward. To do
this, every actor has three built-in functions: attach_agent,
do_action and update_reward.
attach_agent - To attach an agent, we only need to add

one line to the instantiation of the distributed system. The
line Worker.attach_agent(w, ChunkSizeGoal) can now
be uncommented in Fig. 5. The w parameter refers to a worker
actor, and the ChunkSizeGoal goal was defined in Fig. 8.
Note that it is possible to attach multiple agents to the same
actor, but they must stem from different goals.

do_action - Next, we need to indicatewhen an actor must
choose to perform an action. In our current implementation
of the load balancing example, the worker always requests
a chunk size of 1; this is done on line 8 and line 25 of Fig. 7.
These lines can now be removed, and the Worker.do_action
lines are uncommented. The agent associated with this ac-
tor can now choose from its action space (line 4 of Fig. 8),
and perform this action. An action in Marlon always corre-
sponds to sending a message. Worker.do_action(self(),
ChunkSizeGoal) corresponds to sending a process_chunk
message with either 1, 2 or 3 as the parameter.

update_reward - Finally, we still need to indicate when
the agent can compute its reward, based on the associated ac-
tor’s state and the action thatwas chosen. An update_reward
call must always take place after a do_action call, as soon
as the effect of the chosen action can be observed. In the
load balancing example, the effect of choosing a specific
chunk size can be observed once the worker knows how
long it needs to wait before the chunk is sent. That is, when
the worker receives a notify_wait_time message from the
master. Lines 32-33 are now uncommented in Fig. 7. This
update_reward call will compute the reward value using
the reward function of lines 5-6 of Fig. 9.

6.3 Fault tolerance
Up to now, we can use Marlon to implement distributed
systems that operate correctly in a fixed network in which
no network failures occur. To address challenges (B) and
(C) of Sec. 2, the system should also consider a dynamic
network where nodes can join or leave, where leaving can
occur intentionally or due to failure. Marlon makes use of
the libcluster library, which can be configured to automati-
cally detect nodes joining or leaving the network. It does this
using a simple "gossip" protocol, where nodes confirm their
presence by broadcasting a message using multicast UDP to
the other nodes at a fixed time interval. If a node fails, this

can be detected eventually by the absence of this message.
If a node leaves intentionally, it can immediately announce
its leaving. A Marlon application can be configured such
that a message is sent to a user-specified actor whenever
a node joins or leaves. This is used in the load balancing
system to automatically start a new worker when a node
joins, or to cancel a chunk being processed when a node
leaves One drawback of relying one user-specified actor is
that we assume the node this actor is running on is reliable.
This could be resolved in future work by, for instance, speci-
fying multiple actors and a leadership election protocol to
determine which actor should handle nodes joining/leaving
the network. Finally, the MARL algorithm is also notified
whenever an agent joins or leaves the system. If an algorithm
does not support a dynamic environment, this notification
can be used to reset its learning progress. However, with
regards to challenge (C), it should be noted that resetting
the learning progress is not a suitable solution if nodes are
joining/leaving so frequently that the learning algorithm
does not have enough time to be of value. In this situation,
it is necessary that the MARL algorithm is designed with a
dynamic environment in mind.

7 Using existing MARL algorithms
The Marlon language in itself is not intended to write new
MARL algorithms. Given that Marlon’s host language, Elixir,
is not commonly used for machine learning, we only expose
an Elixir API for MARL algorithms. The idea is that an imple-
mentation of this API only acts as a thin wrapper around an
existing MARL algorithm written in e.g. Python or C++. For
instance, most of our implementations of the API call out to
a C++ library called AI-toolbox2, which provides a collection
of (MA)RL algorithms. This enables MARL experts to con-
tinue developing algorithms in a familiar setting, without
needing to focus on the intricacies of distributed computing.
The API for MARL algorithms is shown in 10. Note that,

to address challenge (A) of Sec. 2, the API only uses MARL
terminology and has no references to actors or messages.

init_algorithm is used for any initialisation code that
is run once (per goal definition). init_agent can be used
for initialisation code that is run whenever an agent is at-
tached. is_learning returns false when a MARL algorithm
has finished learning. choose_action requires the MARL al-
gorithm to choose an action, in the form an integer. Whereas
the action space is defined in terms of messages and their
possible parameter values, Marlon internally maps each pos-
sible message + parameter-value combination to a unique
integer, so the MARL algorithm can remain unaware of ac-
tor messages. update_reward is called whenever the agent
has computed a new reward value. Marlon will ensure the
desired (shared) state information is available in the agent’s
state at that point, which is why it is not necessary to pass

2https://github.com/Svalorzen/AI-Toolbox
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1 defprotocol MarlAlgo do

2 def init_algorithm(MarlAlgo , data) :: MarlAlgo

3 def init_agent(this , init_state) :: MarlAlgo

4 def update_reward(this , reward) :: MarlAlgo

5 def is_learning(this) :: boolean

6 def choose_action(this) :: integer

7 def action_probabilities(this) :: map

8 def best_action(this) :: integer

9 def reset(this) :: MarlAlgo

10 def agent_joined(this , pid) :: MarlAlgo

11 def agent_left(this , pid) :: MarlAlgo

12 end

Figure 10. API of a MARL algorithm

it as a parameter. reset can be used to restart the learning
algorithm. action_probabilities returns a map that in-
dicates for each state-action combination, the probability
that the given action is the best choice for the given state.
best_action returns the action with the highest probabil-
ity of being the best action, given the current state. Finally,
agent_joined and agent_left are called to notify the al-
gorithm whenever a specific agent and its associated actor
have joined or left the network.

8 Evaluation
To evaluate whether Marlon effectively simplifies the use
of MARL in a distributed environment, we have compared
the Marlon implementation of our load balancing example
with an implementation written directly in Elixir.3 The Elixir
version of the application is provided in two versions: the
first version is simpler; the MARL algorithm does not require
agents to communicate with each other, and it does not need
to be notified whenever workers join or leave the network. In
the second version, the chosen MARL algorithm does require
that the agents share a part of the worker’s state (i.e., how
long a worker should wait before it receives chunk data).
Additionally, in this version the algorithm also needs to be
notified whenever a worker joins or leaves the network.
Fig. 11 shows a “zoomed-out” view of the entire source

code for the three versions of the load balancing system,
where each line of code is coloured to reflect a specific con-
cern. The Marlon code is shown on the left; this version
of the code counts 109 (non-empty) lines of code (LOC) in
total. The first, simpler version of the Elixir code is shown in
the middle (Elixir - v1); it has 168 LOC. The second version
of the Elixir code is shown on the right (Elixir - v2), and
has 202 LOC. Note that the Marlon version that is shown
only corresponds to Elixir - v1. However, it can be easily
updated such that it corresponds to Elixir - v2 by simply
adding shared[:wait_time] to the goal specification.
The colour coding in Fig. 11 indicates five different con-

cerns in the source code. The majority of the code, in all three

3The code for the different implementations is available at: https://gitlab.
soft.vub.ac.be/smileit/marlon-dsl/raw/master/res/Load-balancing.zip
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Figure 11. Comparison of load balancer implementations

versions, represents the distributed system itself; this code is
not MARL-related. In Marlon, it occupies 92 LOC; in Elixir -
v1: 116 LOC; in Elixir - v2: 120 LOC. For the other concerns,
we will use a shorthand notation, (LOC: 92, 116, 120). The
difference between Marlon and Elixir can be attributed to a
more concise syntax of defactor.
Dynamic environment - (LOC: 6, 6, 15) As the Marlon

and Elixir-v1 implementations both use libcluster to handle
nodes joining/leaving, this code is identical. In Elixir-v2 more
code is required because the MARL algorithm needs to be
notified of nodes joining/leaving the network.

Agent interaction - (LOC: 4, 22, 23) This category refers
to all communication with agents: attaching an agent, asking
it for an action, or providing a new reward value. In Mar-
lon, this communication is handled with one-liners, i.e. the
attach_agent, do_action and the update_reward func-
tions built into each actor (Sec. 6.2). In the Elixir versions,
these are now implemented directly in the worker code.
These Elixir implementations assume which goal the system
is trying to achieve, which makes it less flexible to experi-
ment with different goals.

Goal specification - (LOC: 6, 22, 22) The code labeled
“goal specification” refers to all code that directly interacts
with the MARL algorithm. In the Marlon version, this cor-
responds to the defgoal construct. The closest a Marlon
developer can get to interacting with the MARL algorithm

https://gitlab.soft.vub.ac.be/smileit/marlon-dsl/raw/master/res/Load-balancing.zip
https://gitlab.soft.vub.ac.be/smileit/marlon-dsl/raw/master/res/Load-balancing.zip
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is by providing its parameters, reward function and action
space. In the Elixir versions, it is the developer’s respon-
sibility to know how to set up and interact with a MARL
algorithm, which is also why its "goal specification" code is
larger. (In Elixir-v2 this code has a few more LOC than v1,
due to an extra function that notifies the algorithm that the
network has changed.)

State sharing - (LOC, 1, 0, 12) To share parts of the worker
state among agents, several parts of Elixir - v2 are affected.
The master, initialization code, and workers are adapted to
share the waiting time with all agents. Moreover, these mod-
ifications are specific to sharing the waiting time; substantial
changes may be necessary to share other information.
The main takeaway of this evaluation is not per se that

Marlon saves a large amount of LOC. While the effect is
substantial in this small load balancing example, in a larger
system the amount of MARL-related code may be much
smaller than the amount of distributed system code. Instead,
our conclusion is that Marlon provides a clean separation
between the distributed system and any MARL-related code,
whereas the MARL-related code is scattered throughout the
distributed system code in the ad-hoc Elixir implementations.

9 Related work
To our knowledge there is no directly related work that aims
to facilitate the use ofMARL in distributed systems. However,
there is related work that involves the two domains: Todd
et al. [9] have developed two frameworks for multi-agent
systems in Scala, one that uses an actor-based concurrency
model, and one that uses a thread-based model. The two
frameworks were mainly developed to compare the perfor-
mance of the two models. While the thread-based framework
shows better performance on a single machine, this may no
longer be the case once multiple machines are involved. The
work of Sujeeth et al. [7] presents the OptiML DSL. This
work is related in the sense that it applies machine learning
in a distributed setting. However, its main focus is on ex-
ploiting parallelism to improve the performance of machine
learning algorithms, which may or may not be applicable
to multi-agent environments. Our main focus is on making
MARL more accessible for use in distributed systems.

The close relation between agents and actors has also been
observed by Tošić et al. [10], Di Stefano and Santoro [3]. They
make use of the relation to develop agent-oriented languages
on top of actor-based languages, such as Erlang and Scala.
While these languages have their origins in artificial intel-
ligence, they are intended as a general-purpose language
rather than to solve machine learning problems.
Next to general-purpose MARL frameworks, there also

are frameworks specific to the domains of smart grids [5],
communications networks [4], access control [2] or traffic
signal control [6]. These frameworks may be more suited
for these specific domains, but it could also be argued they

may be less flexible to be deployed in a variety of different
network environments.

10 Conclusion and future work
In this paper we have introduced the Marlon language to
simplify making use of MARL in a distributed environment.
Regarding future work, we would like to make use of Mar-
lon to implement additional real-world use cases. This may
require the language to be extended to cope with the needs
of a specific distributed environment. There may also be
types of MARL algorithms that do not fit our current API yet.
Finally, it would be interesting to measure to what extent
our current design scales to learning within a larger group of
agents, or whether it is possible to effectively learn multiple
goals simultaneously.
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